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La modélisation stochastique avec point de vue lagrangien a déjà été développée et
appliquée au cadre des écoulements monophasiques et des écoulements diphasiques
incompressibles. Cet article propose une extension de ce formalisme aux écoulements
diphasiques compressibles avec changement de phase (de type eau-vapeur par exemple).
L’accent est mis sur deux aspects essentiels, dont la formulation est nouvelle en
modélisation stochastique : un modèle de changement de phase et l’expression d’une
contrainte portant sur la conservation du volume. Enfin, à titre d’exemple, des éléments
de réflexion sont présentés pour deux modèles bifluides.

© 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

a b s t r a c t

Stochastic modelling has already been developed and applied for single-phase flows
and incompressible two-phase flows. In this article, we propose an extension of this
modelling approach to two-phase flows including phase change (e.g. for steam-water
flows). Two aspects are emphasised: a stochastic model accounting for phase transition
and a modelling constraint which arises from volume conservation. To illustrate the whole
approach, some remarks are eventually proposed for two-fluid models.

© 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

Abridged English version

Over the last decades, modelling of compressible two-phase flows has been tackled using approaches based on sets of
Partial Differential Equations (PDEs), whose unknowns are Eulerian mean fields [1,2]. Therefore, the derivation of constitu-
tive laws, even those describing highly non-linear local phenomena (e.g. the phase change), is directly done using mean
fields, which represent a restricted statistical information. These Eulerian models are satisfactory for a certain range of in-
dustrial situations. Nonetheless, when the governing phenomena are highly non-linear (e.g. when dealing with cavitation,
polydispersed bubbles, nucleate boiling, . . . ), such approaches can lead to descriptions that are not accurate enough. In
these situations, one can benefit of the stochastic modelling approach using a Lagrangian point of view [3,4] (or Lagrangian
stochastic modelling). This approach has already been applied to different configurations: incompressible single-phase flows
have been widely addressed, see [3] among others for a complete presentation, whereas the effect of compressibility in
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single-phase flows has been less investigated [5]. Modelling of two-phase flows introduces new aspects, some of which have
been addressed in [4] for incompressible flows. In the present paper, we propose an extension to compressible two-phase
flows. It is worth recalling that the Lagrangian stochastic approach amounts to closing the Probabiliy Density Function (PDF)
of the variables chosen to describe the flow, from which classical PDEs for the corresponding mean fields may be obtained.

Flows are described using particles, where each particle represents a sufficient number of molecules so that the classical
notions of the continuum mechanics still make sense. Each particle of phase k (with k = 1,2) is associated with a mass mk ,
a position in the physical space xk , a velocity uk , a volume vk and an internal energy ek . This set of variables is one possible
minimal set of variables necessary to describe non-uniform transient compressible flows (in the compressible single-phase
case depicted in [5], the pressure has been chosen instead of the volume). All other quantities are functions of these five
variables: for example pressures pk = Pk(vk, ek) and the densities ρk = mk/vk . An important point to be put forward is that,
since the position in space xk and the velocity uk (and thus the trajectory) are variable, we are dealing with a Lagrangian
description. The time evolution of the variables is governed by stochastic differential equations, each one involving two
modelling terms: one term that describes the evolution of the expectation, and one term defining the behaviour of the
dispersion around the expectation. These terms are not detailed in the sequel, except those for the volumes vk .

Phase change is modelled using two ingredients: a condition to fulfill for each particle to change phase and an instan-
taneous “transformation” applied to the variables (mk, xk, uk, vk, ek) when the transition occurs. The choice for the latter
is straightforward: the value of the variables does not change. Despite its simplicity, this choice obviously guarantees con-
servation of the variables (mk, xk, uk, vk, ek) and of the total local number of particles. Phase transition is assumed to be
instantaneous. In order to account for the non-zero characteristic time scale τ for the phase change of a set of identical
particles, we add a variable D to each particle. This variable follows an exponential law with a parameter 1/τ . It represents
the lifetime of the particle before the phase transition. Finally, phase change occurs if and only if it is followed by a de-
crease of the chemical potential and if the realisation D of D is less than δt , where the latter stands for the physical time
represented by the phase transition (i.e. for example, δt is a time step when considering a numerical scheme).

Once the model has been defined, it is possible to write a Chapmann–Kolmogorov equation (2) which governs the time
evolution of the PDF f L(t; Z L
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This Eulerian field represents the fraction of volume per unit of volume occupied by the phase k. In order to ensure the
consistency of our model with the physics, the sum of the volumic fractions must always be equal to one. This is related to
the so-called volume conservation property. The Chapmann–Kolmogorov equation for f L leads to PDEs (3) on the expecta-
tion of any function of Z L

k . Using the PDEs (3) for the expectation of the inverse of the densities, two PDEs for αk may be
found. Then, it can be shown that the constraint α1(t, x) + α2(t, x) = 1 is equivalent to the constraint (5) on the modelling
terms Av

k for the volumes of the particles. When this constraint is fulfilled, it appears that all the PDE systems on the mean
fields that can be derived from the stochastic model contain the two equations (6).

It is interesting to focus on the two equations (6) for dispersed spherical bubbles in a liquid. On the one hand, a sim-
plified Rayleigh–Plesset equation (8) for the pulsation of the bubbles can be used to define Av

1 . Then the modelling term
Av

2 is chosen according to (5), to ensure the property of volume conservation. The resulting equation for α1 is close to the
equation of the models of [7–10]. On the other hand, a modelling term for the bubble volume that allows to retrieve the
standard two-fluid model can be exhibited (12). It is very intricate and its exact physical content remains an open question.

The modelling approach proposed herein suggests some forthcoming works. First, systems of PDEs can be derived from
a physical description of compressible two-phase flows, carried out by a Lagrangian stochastic model. In this approach,
the physical hypotheses underlying PDE systems appear more clearly. At last, numerical simulations of two-phase flows
involving phase transition could be improved by applying hybrid schemes, following the ideas developed in [12,13]. The
latter requires to have a stochastic model and a PDE system derived from this model.

1. Introduction

La physique des écoulements diphasiques compressibles est complexe et, à ce jour, certains de ses aspects restent encore
mal compris. C’est notamment le cas des échanges de masse, de quantité de mouvement ou d’énergie entre les phases qui
constituent des éléments clefs dans la phénoménologie des applications industrielles.

Depuis plusieurs dizaines d’années la modélisation mathématique de tels écoulements repose essentiellement sur des
approches basées sur des champs eulériens moyens. Les systèmes d’équations aux dérivées partielles (EDP) associés à ces
modèles sont obtenus en appliquant des opérateurs de moyenne sur des « poches de fluide » monophasiques [1,2]. D’un point
de vue formel, une fonction indicatrice définit la répartition spatio-temporelle des phases et dans chacune des zones ainsi
décrites un système d’EDP monophasique (Euler par exemple en compressible) régit l’évolution instantanée des champs
du fluide. Les systèmes d’EDP pour les champs moyens sont ensuite obtenus par application d’un opérateur de moyenne.
Finalement, la modélisation des échanges entre les phases est réalisée a posteriori sur les champs moyens obtenus.

Les approches basées sur une description particulaire avec modélisation stochastique permettent d’établir les modèles
sur les grandeurs instantanées et non sur les champs moyens [3,4]. Ensuite, une fois le modèle instantané établi, il est
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