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1. Introduction

Effects of agricultural management practices on crop growth,
soil carbon and nutrient dynamics, and greenhouse gas emission
have been studied for several decades. It is widely accepted that
changes in agricultural practices, such as crop rotation, conserva-
tion tillage, organic fertilizer, and complete return of crop residues,
will result in changes in the crop yield as well as soil organic carbon
content (Basamba et al., 2006; Cai and Qin, 2006; Cherr et al., 2007;
Dolan et al., 2006; Fliebbach et al., 2007; Koch and Stockfisch,
2006; Meyer-Aurich et al., 2006; Moret et al., 2007; Sainju et al.,
2006; Sieling et al., 2006). However, experimental evidences on
these effects are somewhat inconsistent. Soil and climate
conditions also strongly influence these effects (Baker et al.,
2007). The short-term effects are often inconsistent with long-
term effects (Grant et al., 2001; Meyer-Aurich et al., 2006; Sainju
et al., 2006). Therefore, there is a demand for information of both
the short- and long-term effects of agricultural practices on crop
production and soil carbon dynamics that may be used to help

select optimal management options that maximize long-term
sustainability of crop production and soil carbon sequestration.

Field experiments are the most reliable source of this
information, and can help resolve the observed inconsistency
between long- and short-term effects. However, site-specific
influences on these effects constrain extrapolation of experimental
results, and well-designed and documented long-term experi-
ments are rare and difficult to maintain. They are also limited by
time and cost. Simulation models with demonstrated accuracy and
reliability provide an alternative method of assessing both short
and long-term agricultural practices with low time requirements
and cost (Farage et al., 2007; Farahbakhshazad et al., 2007; Janssen
and van Ittersum, 2007; Malone et al., 2007). Many models have
been developed to describe the responses of crop growth to specific
soil and climatic conditions and management practices (Chertov
and Komarov, 1997; Grant et al., 2001; Jenkinson, 1990; Parton
et al., 1987; Shaffer et al., 2001; Smith et al., 1997; Wallman et al.,
2006; Wu and McGechan, 1998). Many models are not well suited
for general use. For example, Ecosys (Grant et al., 2001) uses a very
detailed, complex description of crop growth making parameter-
ization a challenge. The model CERES (Godwin et al., 1989; Jones
and Kiniry, 1986) have different versions for different crops,
complicates its general use. Other models, such as CENTURY and
DNDC, use many statistical functions to estimate crop growth.
Generally speaking, the utility and prediction accuracy of these
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A B S T R A C T

Simulation models are widely used to make predictions of crop growth and yield, and soil carbon and

nutrient dynamics under various agricultural practices and soil-climatic conditions. An analytical model

of soil carbon and nutrient dynamics, K-model, was expanded to include a plant sub-model (K-Model-P).

This allows for the prediction of short- and long-term crop growth, and soil carbon and nitrogen

dynamics. The simulations for a short-term experiment (2 growing seasons) with three nitrogen

application rates showed that K-Model-P correctly predicted the growth processes of above-ground

plant biomass and grain yields. Predicted and measured daily accumulative biomass were significantly

correlated, and differences were statistically insignificant. The simulation results for long-term

experiments (70 years) of two crop rotations with three soil amendments showed that predicted and

measured annual straw and grain yields were significantly correlated, with the differences of less than

13%. Annual crop straw and grain yields can be estimated by the model without significant errors. The

agreement between the predicted daily growth and annual yields and experimental data illustrated that

the K-Model-P can be used to produce reliable predictions for daily and annual crop growth.
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models are reduced when they are used beyond the conditions and
length of time covered by the data from which these functions are
developed.

The K-model (Feng and Li, 2002, 2001) is a semi-analytical soil
carbon and nitrogen dynamics model. It integrates soil carbon and
nutrient process functions and a geographic information system
into a Microsoft Office Excel user interface to provide a flexible and
user-friendly modeling tool over wide spatial and temporal scales.
Its crop sub-model (K-Model-P) aims to effectively integrate the
biophysical and numerical functions of crop growth to avoid the
disadvantages discussed above. The K-Model-P is composed of
simple algorithms of crop growth, linked to soil carbon and
nutrient dynamics of the earlier version of the K-model, and
provides a simple user-friendly tool for evaluating the effects of
cropping and land management practices on productivity of
agricultural crops and grassland.

The purpose of this paper is to present the analytical–
biophysical crop growth sub-model of the K-model, K-Model-P,
and to evaluate its performance on predicting crop growth by
validating simulation results against data from two experimental
sites with different soil/climate conditions and cropping/soil
management practices.

2. Description of model

The K-Model-P is a daily crop growth sub-model of the K-model
(Feng and Li, 2002, 2001). Most of the crop growth algorithms are
adopted from DAICRO (Verdoodt et al., 2004), SUCROS (van Laar
et al., 1992), CERES (Jones and Kiniry, 1986; Ritchie et al., 1988) and
SPASS (Wang and Engel, 2000, 2002). It simulates plant biomass
production, autorespiration loss, and below- and above-ground
growth and senescence as functions of daily climate parameters
and soil environmental conditions (Fig. 1, definitions of symbols in
Fig. 1 are listed in Appendix A). Climate data inputs consist of
incoming radiation, air temperature, wind speed and relative
humidity. Soil input data include soil texture, soil organic carbon
and nitrogen contents, mineral nitrogen content, soil water
content and temperature, which are computed by the soil organic
matter and water/energy transfer sub-models.

2.1. Photosynthesis

Daily rate of canopy CO2 assimilation (e.g. Gross Primary
Production, GPP) is dependent on the leaf photosynthetic capacity
and various environmental factors (Goudriaan and van Laar, 1994).
GPP is related to the maximum gross photosynthesis rate (pm), and
changes exponentially with the photosynthetically active radiation
intercepted by the plant canopy (PAR) and light use efficiency (Leu)
(Wang and Engel, 2002).

GPP ¼ pm 1� exp
�LeuPAR

pm

� �� �
pm >0

0 pm ¼ 0

8<
: (1)

PAR is exponentially related to the canopy light extinction
coefficient (k) and leaf area index (LAI), and is reduced by the
surface albedo (a) of the ecosystem.

PAR ¼ 0:5Rað1� apÞð1� expð�k� LAIÞÞ (2)

We have assumed that approximately one half of the incoming
solar radiation (Ra) is in the short-wave spectrum (photosynthetic),
represented by the parameter 0.5.

Ecosystem albedo is approximated as the sum of soil (as) and
vegetation (ap) albedo weighted by radiation partitioning between
soil and vegetation.

a ¼ as � expð�k� LAIÞ þ a p � ð1� expð�k� LAIÞÞ (3)

The maximum photosynthesis rate, pm, is modified by the
ambient CO2 concentration, air temperature, soil water and
nutrient limitations ( f ½CO2 �, ST, Sw and SN) from the daily maximum
rate of photosynthesis at the reference CO2 concentration of
340 ppm and the optimum temperature (pmax340) (Wang and
Engel, 2002).

pm ¼ pmax340 f ½CO2 �ST �minðSw; SNÞ � LAI (4)

pmax340 is calculated from day light length (Dl) and hourly light-
saturated gross photosynthesis rate at the CO2 concentration of
340 ppm, optimal air temperature and no stress from soil water

Fig. 1. Structure of the plant sub-model (K-Model-P) of the K-model. The boxes with solid frames indicate state variables, boxes with dashed frames are input conditions, and

boxes with round corners are state variables computed by other sub-models. Valves represent conversion rate. Solid arrows show direction of mass and/or energy flow while

dashed arrows represent flow of information controlling mass/energy transfer rates.
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