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a b s t r a c t

In many randomized trials, subjects enter the sample sequentially. Because the covariates for all units are
not known in advance, standard methods of stratification do not apply. We describe and assess the
method of DA-optimal sequential allocation (Atkinson, 1982) for balancing stratification covariates across
treatment arms. We provide simulation evidence that the method can provide substantial improvements
in precision over commonly employed alternatives. We also describe our experience implementing the
method in a field trial of a clean water and handwashing intervention in Dhaka, Bangladesh, the first time
the method has been used. We provide advice and software for future researchers.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Randomized-controlled trials (RCTs) are an increasingly im-
portant tool for policy evaluation and estimation of economic
parameters. However, they are expensive, and efficient use of
limited resources (funding, inputs from implementation partners,
and researchers' time) requires that they be designed carefully. In
an important contribution, Bruhn and McKenzie (2009) reviewed
stratification methods that were common in economics RCTs at
the time, and showed that large gains in precision were available
by adopting more sophisticated stratification methods from the
clinical trials literature. These stratification methods require re-
searchers to obtain stratification covariates from all subjects prior
to randomization. However, this is not always feasible. In clinical
trials, subjects are often allocated to treatment as they arrive. In
field trials, operational constraints may prevent defining and sur-
veying the full sample frame in advance. In such situations, sub-
jects must be assigned sequentially, with the researcher only
learning the value of the stratification variables for that subject's at
the time of enrollment and assignment.1

In this paper, we propose the use of DA-optimal sequential

allocation (Atkinson, 1982) to improve balance and power when
subjects are enrolled sequentially. The DA-optimal method mini-
mizes imbalance given the constraint of not knowing covariate
values in advance. We describe the method and its properties, and
provide an algorithm for its implementation. We conduct a set of
simulations, based on Bruhn and McKenzie (2009), and show that
the DA-optimal method offers clear benefits relative to commonly
used sequential alternatives. In fact, surprisingly, optimal se-
quential designs are comparably well-balanced to stratifications
performed with full knowledge of covariates in advance. In spite of
these practical advantages, the method had not, to our knowledge
and according to three survey articles, ever been employed in the
field.2 We describe our experience implementing the method in a
water treatment and hygiene intervention in Dhaka, Bangladesh
(Guiteras et al., 2015), and offer practical advice on its im-
plementation under field conditions. Implementation was feasible
with standard software (Stata), and produced an allocation that
was well-balanced both on the stratification variables chosen
ex ante and, ex post, on other important variables that were not
included in the stratification.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/deveng

Development Engineering

http://dx.doi.org/10.1016/j.deveng.2015.11.001
2352-7285/& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

n Corresponding author.
E-mail address: guiteras@econ.umd.edu (R.P. Guiteras).
1 Examples of sequential randomization in economics include Beaman and

Magruder (2012), which randomized without stratification, and Bronchetti et al.
(2013), which stratified using the block randomization method we describe in
Section 5.1.2.

2 See McEntegart (2003), Table 1 in Taves (2010), and Ciolino et al. (2011).
Confirmed by personal communication with J. Cicolino, Northwestern University,
January 17, 2014.

Development Engineering 1 (2016) 12–25

www.sciencedirect.com/science/journal/23527285
www.elsevier.com/locate/deveng
http://dx.doi.org/10.1016/j.deveng.2015.11.001
http://dx.doi.org/10.1016/j.deveng.2015.11.001
http://dx.doi.org/10.1016/j.deveng.2015.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.deveng.2015.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.deveng.2015.11.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.deveng.2015.11.001&domain=pdf
mailto:guiteras@econ.umd.edu
http://dx.doi.org/10.1016/j.deveng.2015.11.001


2. Theory

Our exposition follows Atkinson (2002), with some changes in
notation. First, we lay out the model and notation. Second, we
develop the theory for the traditional situation of a fixed popula-
tion of N subjects, for whom covariates X have been collected in
advance. Third, we introduce sequential designs using a simplified
case where the researcher is concerned with the precision of all
estimated parameters, both treatment effects and nuisance para-
meters (coefficients on stratification variables). Finally, we adapt
the sequential design to the standard situation where only pre-
cisely estimated treatment effects are of interest.

2.1. Model and notation

Suppose the researcher is conducting an individual-level trial
with J treatments, including the control treatment. We first con-
sider a linear model with homogeneous treatment effects and i.i.d.
errors. In Section 3, we discuss extensions, including hetero-
scedasticity, nonlinear models, and cluster designs. The model for
unit i is

α β ε θ ε= ′ + ′ + = ′ + ( )y d x w , 1i i i i i i

where di is a J�1 vector of indicator variables assigning unit i to a
single treatment (i.e., exactly one element of di is equal to one), xi
is a ×K 1 vector of covariates, and εi is an error term. Without loss
of generality, we order the treatments with the control condition
first. Let ( )d ji indicate assignment to the jth treatment; that is,

( ) = ( ⋯ )′d 1 1 0 0i , ( ) = ( … )′d 2 0 1 0 0i , etc. We are interested in es-
timating contrasts between the elements of α; that is, α α−1 2,
α α−1 3, etc. The control group mean is a nuisance parameter,3 as
are the K elements of β (the coefficients on the covariates), so we
have Kþ1 nuisance parameters and −J 1 parameters of interest.4

2.2. Optimal designs with baseline covariates

First, consider a population of N subjects, for whom the re-
searcher has obtained baseline covariates X prior to randomiza-
tion. The population regression model is given by

α β θ[ ] = + = ( )E Y D X W , 2

where D is the ×N J matrix assigning all subjects to treatment (i.e.,
= ( ⋯ )′D d dn1 ). X is the ×N K matrix of covariates, and α and β are

as before. Given the covariates X, our goal is to choose D to
minimize the variance of our estimated treatment effect. As a
simple example, with one treatment plus a control condition, J¼2,
we are interested in the contrast α α−1 2 and wish to minimize

α α[^ − ^ ]V 1 2 .
A useful matrix to create contrasts is
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Now we can create a vector of contrasts by premultiplying α by ′L :
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To annihilate the nuisance parameters, we augment ′L with a
( − ) ×J K1 matrix of zeros, and define

′ = [ ′ ]A L 0 .

The variance of α̂ is proportional to square root of the de-
terminant of the generalized variance5:

{ }( ) ( )′ ′ = ′ ′ − ′ ′ ′
( )

− − −
A W W A L D D D X X X X D L .

3
1 1 1

This quantity is minimized when ′ =D X 0; that is, when the
treatment assignment is orthogonal to the covariates, which is to
say that the treatments are balanced across the covariates. When

′ =D X 0, the generalized variance simplifies, and the determinant
is

( ) ( )′ ′ = ′ ′ =− − −A W W A L D D L J N/J J1 1 1

This minimum possible value is the standard against any other
treatment assignment D. Note that this value is increasing in J and
decreasing in N, which matches our intuition that the variance will
increase with the number of treatments and decrease with the
number of observations.

The relative efficiency of a design D is the ratio of the de-
terminant of the generalized variance to this minimal value:
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where ( − )J1/ 1 is a scale factor. A smaller denominator
′ ( ′ )−A W W A1 leads to higher , implying a more efficient design.

Note that = 1 for an exactly balanced design. A useful re-
presentation is the loss

= ( − )N 1 ,

which is expressed as the effective loss of observations relative to
an optimal design. That is, a non-optimal design D with N units is
as precise as an optimal design with ( − )N 1 fewer units. For an
exactly balanced design, = 0.

Although not the focus of this paper, this framework can be
used for near-optimal randomization in cases where a researcher
can collect baseline data prior to randomization. Specifically, cre-
ate a large number S of random allocations { … … }D D D, , , ,s S1 and
choose the allocation Ds with lowest associated loss.6 Kasy (2013)
considers a more general Bayesian framework, and provides a
search algorithm to find an optimal allocation.7

2.3. Sequential D-optimality

To extend to sequential randomized trials, we first consider the
simple case where all elements of θ α β= ( ′ ′)′, are of interest. Our

goal is to minimize the variance of θ̂ . The variance of θ̂ is pro-
portional to the inverse of the design matrix ( ′ )−W W 1, so we want
to minimize ( ′ )−W W 1 or, equivalently, maximize ′W W , which will
give us a D-optimum design.

Suppose the first n units have been allocated, with the resulting

3 We are not interested in α1 per se, but a precise estimate α̂1 is necessary to
estimate contrasts precisely.

4 A more familiar setup for economics readers would include an intercept term
as a covariate, so α∼1 would have −J 1 elements (corresponding to the −J 1
treatment conditions excluding the control) and the augmented covariate vector
( ′)′x1, would have +K 1 elements including the intercept. This turns out to be less
convenient for some of the matrix algebra below.

5 Recall that = [ ]W D X , so ′ = [ ][ ] = [ ]′
′

′
′

′
′W W D XD

X
D D
X D

D X
X X

. Then use results on
inverses of partitioned matrices and use the zero block of the matrix A to zero out
several terms.

6 To conduct randomization inference, rather than choose the allocation with
minimum , the researcher can instead specify an acceptable maximum , retain

+R 1 draws with loss less than , select one of these +R 1 at random, and retain
the remaining R for randomization inference. Code is available from the authors on
request.

7 This optimal allocation is unique if any element of x is continuous, and may
be unique (in finite samples) even for discrete x with a large number of treatments
and covariate cells. See also Bertsimas et al. (2015).
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