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a b s t r a c t 

Despite its popularity, differential form of Eringen nonlocal model leads to some incon- 

sistencies that have been demonstrated recently for the cantilever beams by showing the 

differences between the integral and differential forms of the nonlocal equation, which 

indicates the importance and necessity of using the original integral model. 

With this motivation, this paper aims to derive the closed-form analytical solutions 

of original integral model for static bending of Euler Bernoulli and Timoshenko beams, 

in a simple manner, for different loading and boundary conditions. For this purpose, the 

Fredholm type integral governing equations are transformed to Volterra integral equations 

of the second kind, and Laplace transformation is applied to the corresponding equations. 

The analytical expressions of the beam deflections which are obtained through the uti- 

lization of the proposed solution technique are validated against to those of other studies 

existing in literature. Furthermore, for all boundary and loading conditions, in contrast to 

the differential form, it is clearly established that the integral model predicts the softening 

effect of the nonlocal parameter as expected. In case of Timoshenko beam theory, an addi- 

tional term that includes the nonlocal parameter is introduced. This extra term is related 

to the shear rigidity of the beam indicating that the nonlocal effect manif ests itself via not 

only bending, but also shear deformation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Local theory of elasticity becomes inadequate when internal (e.g. atomic or granular distance, relaxation time etc.) and 

external (e.g. crack length, wave length, period of load, application area of load etc.) characteristic length or time scales are 

comparable as appeared in several cases such as sharp crack tip propagation in fracture mechanics, wave propagation of 

composites under high-frequency excitations and mechanical behavior of nano and micro structures ( Benvenuti & Simone, 

2013; Eringen, 1974; Fernández-Sáez, Zaera, Loya, & Reddy, 2016; Pisano & Fuschi, 2003 ; etc.) where the nonlocal effects are 

much more dominant. 

In order to overcome this shortcoming, as well as to investigate the size effects, different theories have been devel- 

oped. First attempts to address the nonlocal effects stand back to works of Cauchy and Voight (19th century) and Cosserat 

(20th century) ( Fernández-Sáez et al., 2016 ). The gradient elasticity constitutive models were developed by Mindlin (1965), 

Toupin (1962) and Mindlin and Eshel (1968) . Meanwhile, early formulations of nonlocal elastic constitutive equations which 
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were introduced by Kröner (1967), Krumhansl (1968) and Kunin (1968) were improved further by Eringen (1966, 1972, 

1983, 1987 ), Eringen and Edelen (1972) . In addition to abovementioned approaches, molecular and atomistic theories (e.g. 

molecular dynamic simulations) have also been offered as effective methods, although huge amount of computational effort 

should be allocated for large systems ( Ansari, Rouhi, & Mirnezdah, 2014; Nazemizadeh & Bakhtari-Nejad, 2015 ; etc.). Despite 

their significance, no further information about the advantages, capabilities, and applications of each theory will be given 

here since it is not the scope of the study. Some examples of other considerable works on the topics can be found in the 

articles of Benvenuti and Simone (2013), Pisano, Sofi, and Fuschi (2009) , Li, Yao, Chen, and Li (2015) , Eltaher, Khater, and 

Emam (2015) and Fernández-Sáez et al. (2016) , etc. 

In the literature, one of the most widely used methods is Eringen’s nonlocal theory of linear elasticity which incorpo- 

rates an internal length parameter into the constitutive equation to capture the microstructural effects. Theory exhibits a 

convolution format for constitutive relation where stress at each point is related to the strain of entire domain, through a 

kernel function that is inversely proportional to the distance between investigated and neighboring points. In addition to 

classical integral model (also known as fully nonlocal model), an alternative expression is proposed, which is known as two- 

phase local/nonlocal model, where both local and nonlocal integral constitutive equations are included through a fraction 

coefficient that regulate their weights ( Eringen, 2002 ). Furthermore, the spatial integrals encountered in the formulations of 

nonlocal theory can be converted to their equivalent differential form for specific types of kernel functions as indicated by 

Eringen (1983) . 

Due to its simplicity, many studies utilize the differential form of Eringen model in order to investigate the bending, 

buckling, vibration and wave propogation behavior of structural elements such as; rods, tubes, beams, plates and shells 

( Anjomshoa, Shahidi, Hassani, & Jomehzadeh, 2014; Dansehmehr, Rajabpoor, & Hadi, 2015; Fotouhi, Firouz-Abadi, & Haddad- 

pour, 2013; Hosseini-Hashemi et al., 2013; Hu, Liew, Wang, He, & Yakobson, 2008; Jalali, Jomehzadeh, & Pugno, 2016; Lu 

et al., 2007; Nejad Hadi & Rastgo, 2016; Phadikar & Pradhan, 2010; Rahmani & Pedram, 2014; Reddy, 2007; Reddy & Pang, 

2008; Roque, Ferreira, & Reddy, 2011; Salehipour , Shahidi & Nahvi, 2015; Shaat, 2015; Wang & Liew, 2007 ; etc.). Before any 

further progress, it should be mentioned that; although a few pioneering studies are referenced here, there is an extensive 

literature about the field. In this regard, the readers are encouraged to check the articles of Arash and Wang (2012), Eltaher 

et al. (2015), Khodabakshi and Reddy (2015) and Fernández-Sáez et al. (2016) to access more publications. 

Despite the popularity of the differential form of Eringen model, in several studies focusing on the bending behavior 

of cantilevered beams insubstantial results are presented ( Hu et al., 2008; Peddieson, Buchanan, & McNitt, 2003 ; Reddy & 

Pang, 2008 ; Challamel & Wang, 2008; Li et al., 2015 ; etc.). In this regard, it is reported that the cantilever beams subjected 

to concentrated forces are insensitive to nonlocal (small-scale) parameters while in the case of uniformly distributed load 

nonlocal effect manifests itself as a stiffening contribution which is a questionable outcome since a softening behavior is 

expected within the scope of the results obtained for other boundary conditions (i.e., Reddy & Pang, 2008 ). To overcome 

this deficiency, Challamel and Wang (2008) propose a new model that couples integral model and gradient model which 

is based on the combination of the local and nonlocal curvatures in the constitutive equation. Furthermore, Benvenuti and 

Simone (2013) point out that fully nonlocal model is unable to capture the nonlocal effects of a rod (e.g. constant strain 

field under constant tensile stress and inconsistent stress-strain relations in the case of distributed axial load). They recover 

the size effects by converting the two-phase integral formulation into a specific gradient elasticity formulation. 

In addition, there are also some other studies that do not utilize from the differential counterpart of Eringen integral 

equations. For instance, Polizzotto (2001) developes the Eringen nonlocal integral model by assuming an attenuation func- 

tion depending on a geodetic distance, and accordingly derives the variational statements to obtain a nonlocal finite element 

formulation. In another study, Pisano and Fuschi (2003) convert the two-phase integral formulation into Volterra integral 

equations by utilizing from the symmetry property of a specific kernel function to examine the behavior of a bar under 

tension. Following the conversion, the exact solution of Volterra type integral equations are obtained by using the method 

of successive approximations by Neumann’s series. Furthermore, Khodabakhshi and Reddy (2015) provide a general finite 

element formulation for the local/nonlocal two-phase integral equations and investigate the behavior of Euler–Bernoulli 

beams under transverse loads. Although the deflection of a simply supported beam is not in good agreement with litera- 

ture, the aforementioned inconsistency encountered for cantilever beams is suppressed. In their recent study, Fernández- 

Sáez et al. (2016) indicated that the solution of Eringen integral equation coincidences with the differential form of Eringen 

model if corresponding boundary conditions (see; Polyanin & Manzhirov, 2008 ) are satisfied, which is highlighted earlier by 

Benvenuti and Simone (2013) . In the light of this information, Fernández-Sáez et al. (2016) propose a general method to 

solve the integral equation, and correct the paradoxical behavior encountered with cantilever beams. Results are compared 

with widely used differential Eringen model and it is concluded that differential form is unable to capture the nonlocal 

effects correctly. 

The present work is motivated by the fact that closed-form exact solution of Eringen integral model has not been devel- 

oped so far, despite the inconsistent results obtained from differential form, so called counterpart of integral one. Therefore, 

the aim of this study is to derive the analytical expression of solution of Eringen integral model. For this purpose, the gen- 

eral three-dimensional equations are reduced to one-dimensional form to formulate the Euler Bernoulli and Timoshenko 

beams. Fredholm type integral equations are split into three parts that includes two Volterra integral equations of the sec- 

ond kind. Although the proposed method is valid for any kernel function that depends on the distance variable, it is taken 

similar to those of Fernández-Sáez et al. (2016), Pisano and Fuschi (2003), Reddy (2008) , in order to make comparisons. The 

solution of integral equation is obtained by using Laplace transformation ( Wazwaz, 2011 ). The non-dimensional analytical 
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