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a b s t r a c t 

This paper deals with a key issue in diagnostics and classification of tissue: given a few 

samples of tissue which are known to belong to certain categories (such as “healthy” and 

“diseased”) how to categorize a new sample? This is a well known and analyzed prob- 

lem and very powerful purely data driven approaches have been developed. However, in 

situations with limited experimental data with a large spread that is typical of bioma- 

terials, a purely data driven approach to classifying the samples is inadequate, since it 

can suffer from serious bias due to scant data. Here we propose an approach that uses 

our understanding of the mechanics of the behavior of tissues to transform the problem 

from the high dimensional space of raw data to a probability distribution on a low di- 

mensional parameter space and then use a Bayesian technique for the classification based 

on the parameters. A key point in the paper is that the mapping from the raw data to 

the parameters is not a deterministic mapping (as would be obtained from a lest squares 

or maximum likelihood approach) but a probabilistic one based on Bayes rule. To apply 

this rule, there is a need for hypothesis on the prior probability distributions of the pa- 

rameters themselves and a way to systematically update the hypothesis as more data is 

obtained. Such a framework should be able to (1) capture prior knowledge that we have 

about the parameters (such as for example minimum and maximum values for the pa- 

rameters, likely mean values etc.) ; (2) provide a means for incorporating the knowledge 

gained from experiments and (3) gradually evolve towards a purely data driven approach 

as large amounts of data become available. 

We utilize a “max-ent” approach to the prior distribution: i.e. we select a distribution that 

incorporates any available statistical information about the data while being maximally 

indifferent to all other information. this probability distribution is updated by Bayesian 

inference where the posterior distributions are obtained by a Markov Chain Monte Carlo 

(MCMC) sampling method combined with a continuum mechanics based exact solution of 

a boundary value problem. We illustrate this approach by considering the “soft” classifi- 

cation (i.e we computer the probability of belonging to a class or category) of nominally 

similar sheep arteries (from two different sheep) based on the probability distribution of 
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the parameters corresponding to each class This is an alternative to a logistic regression 

type approach in situations where there is high uncertainty or limited data distribution. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

A central problem of biomechanics is the classification of tissue into different categories based on mechanical response. 

For example, it is well known that breast cancer tissue has different response from that of normal tissue and this has been 

used as the basis for elastographic methods of identifying cancer. From the point of view of classification, the problem can be 

simply stated as follows: given a few sample data (usually referred to as training data) that are known to belong to different 

categories (such as “‘healthy” and “diseased”) we need to build a classifier that can assign a category to a new sample. As 

stated above, the problem does not need any causal model and we can simply use a data driven approach (such as a logistic 

regression, random forests, k-means clustering etc.) that are now available in textbooks and commercial codes to carry out 

the classification. These approaches suffer from serious problems when considering tissue mechanics: they work well only 

if there is sufficient training data available and they cannot be used for extrapolation to other boundary value problems. 

Furthermore, since the raw data (say for example the stress-strain response) is in very high dimensions, the classifier is not 

very effective in such a space with the scant data available. However, there is an alternative; we can use our understanding 

of tissue mechanics to (a) map the raw data into a parameter space using a mechanics model and (b) do the classification 

in the parameter space. For example, while the exact shape of the stress strain response of breast cancer tissue may change, 

they are generally stiffer in the hight strain regime. Thus a stiffness parameter can be used for classification. However, 

there is considerable spread in the data on tissue. One of the biggest challenges for continuum mechanics models that have 

been proposed to characterize and predict the mechanical response of biomaterials such as blood vessels, the heart and 

bones ( Fung, 1993; Holzapfel & Ogden, 20 06; Humphrey, 20 02; Mollica, Preziosi, & Rajagopal, 20 07 ) is to identify the model 

parameters to match experimental data. Conventionally, the least squares approach, wherein the parameters are chosen to 

minimize the squared error between the model predictions and the experimental data has been used to identify such model 

parameters. However, unlike metallic/manufactured materials, it is not possible to enforce control in composition, the size 

and shape of test specimens when considering biomaterials. Neither is it possible to test a large number of samples of 

closely matching characteristics. Indeed, the variance observed in experiments across different sam ples reflects this lack 

of control (see, for example, the data reported in van Andel, Pistecky, and Borst (2003) ; Carboni, Desch, and Weizsäcker 

(2007) ; García-Herrera et al. (2012) ; Holzapfel, Sommer, Gasser, and Regitnig (2005) ; Vande Geest, Sacks, and Vorp (2006) ). 

Furthermore, the quality of available experimental data also limits the ability of models in accurately representing and 

predicting the behavior of biomaterials, i.e. there is substantial epistemic uncertainty in the models. 

1.1. Fitting individual sample data with least squares is not useful for diagnostics when we have only a few samples 

To show why one needs to look beyond a least squares fit for biomaterials, consider, for example, the data reported by 

Carboni et al. (2007) where an anisotropic elastic response function with 6-8 constants are used to fit porcine artery data 

(obtained from pigs from a local abattoir). the values of parameters are chosen to fit each experiment of ”nominally” the 

same body and the results are tabulated in table 2 in their paper. The noticeable feature is the substantial difference in the 

values of the parameter from one sample to the next in spite of the fact that there are six parameters. Furthermore, even 

within a single sample, the measured error between the sample response and the model could be as high as 20%. 

In spite of this huge uncertainty, such models are useful in characterizing the behavior of such materials especially for 

classification purposes where the simplicity of a model fitting approach is a significant advantage in spite of the inaccuracies. 

For example, it has been reported in the literature that elastography studies between normal and diseased liver tissue shows 

a shear modulus difference is about 3 times. However given the wide spread in the data between samples that are known 

a-prior to belong to a given group, simple classifiers based on numerical values of parameters obtained through a least 

squares fit are not reliable. What is needed a probability distribution of parameters for healthy and diseased specimen. 

We wish to point out that the problem is two fold; on the one hand, the material properties of tissue vary with a wide 

range of group characteristics such as age, ethnicity and gender and there is noise associated with this variation. A recent 

paper (see Seyedsalehi, Zhang, Choi, & Baek (2015) ) deals with the group characteristics by invoking a regression based 

model 1 to account for the variation primarily due to age and develops a technique for using this information as a prior for 

patient specific modeling. We note that while there are quite a few samples considered by them, they are not all of the 

same age, i.e. the number of samples at a given age is very small . 

We seek to address a different problem: Given a few tissue samples at a given age, how to classify them into different 

categories? S amples of tissue from a single individual at a given instant of time also show a huge variation (see Fig. 1). 

1 While classical regression requires specific assumptions about the dependence of the output on the input, Gaussian Process models which allow for 

non parametric prediction/estimation of the distribution itself and not just point estimates of the mean values, could also be used. 
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