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a b s t r a c t 

This paper develops the phenomenological continuum dislocation theory accounting for 

the density of redundant dislocations and Taylor hardening for single crystals. As illustra- 

tion, the problem of anti-plane constrained shear of single crystal deforming in single slip 

is solved within the proposed theory. The distribution of excess dislocations in the final 

state of equilibrium as well as the stress-strain curve exhibiting the Bauschinger trans- 

lational work hardening and the size effect are found. Comparison with the stress-strain 

curve obtained from the continuum dislocation theory without the density of redundant 

dislocations and Taylor hardening is provided. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Macroscopically observable plastic deformations in single crystals and polycrystalline materials are caused by nucleation, 

multiplication and motion of dislocations. There are various reasonable experimental evidences supporting the so-called low 

energy dislocation structure hypothesis formulated first by Hansen and Kuhlmann-Wilsdorf (1986) : dislocations appear in 

the crystal to reduce its energy (see also ( Kuhlmann-Wilsdorf, 1989; Laird, Charsley, & Mughrabi, 1986 )). This turns out to 

be the consequence of Gibbs variational principle applied to crystals with dislocations in case of vanishingly small Peierls 

stress (see Berdichevsky (2009) ). Motion of dislocations yields the dissipation of energy which, in turn, results in a resistance 

to the dislocation motion. The general structure of continuum dislocation theory (CDT) must therefore reflect this physical 

reality: energy decrease by nucleation of dislocations and resistance to the motion of dislocations due to dissipation. Just 

in recent years various phenomenological models of crystals with continuously distributed dislocations which are able to 

predict the average dislocation density as well as the accompanying size effects have been proposed in Acharya and Bas- 

sani (2001) ; Berdichevsky (2006a,b) ; Berdichevsky and Le (2007) ; Gurtin (2002) ; Gurtin, Anand, and Lele (2007) ; Kaluza and 

Le (2011) ; Kochmann and Le (20 08, 20 09a,b) ; Le (2016a) ; Le and Nguyen (2012, 2013, 2010) , Le and Piao (2016) ; Le and Sem- 

biring (20 08a,b, 20 09) , Le and Tran (2016) (see also the finite strain CDT proposed by Koster and Le (2015) ; Koster, Le, and 

Nguyen (2015) ; Le (2016b) ; Le and Günther (2014) ; Le and Stumpf (1996a,b,c) , Ortiz and Repetto (1999) ; Ortiz, Repetto, and 

Stainier (20 0 0) ). 

The continuum dislocation theory must in principle be obtained from averaging ensembles of large numbers of dislo- 

cations in crystals (see, e.g., ( Berdichevsky, 2006b; Limkumnerd & Van der Giessen, 2008; Poh, Peerlings, Geers, & Swad- 

diwudhipong, 2013; Zaiser, 2015 )). From the point of view of averaging procedure all dislocations in crystals belonging to 
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one slip system can be fully characterized by two densities. In addition to the above mentioned average dislocation density 

(which we call density of excess dislocations), there exists another density of dislocations which does not show up in the 

non-uniform plastic slip but nevertheless may have significant influences on the nucleation of excess dislocations and the 

work hardening of crystals. For any closed circuit surrounding an area, which is regarded as infinitesimal compared with 

the characteristic size of the macroscopic body but may still contains a large number of dislocations, the resultant Burgers 

vector of these dislocations always vanishes, so the closure failure caused by the incompatible plastic slip is not affected 

by them. Ashby (1970) called them statistically stored dislocations, but we prefer the shorter and more precise name of 

redundant dislocations given earlier by Cottrell (1964) . Let us also point out the important difference between the above 

classification and the classification of dislocations into mobile and immobile dislocations used in the discrete dislocation 

dynamics (see, e.g., ( Han, Hartmaier, Gao, & Huang, 2006; Rhee, Zbib, Hirth, Huang, & De la Rubia, 1998; Zhou, Biner, & 

LeSar, 2010 ) and the references therein). The latter classification is not related to the averaging procedure but rather to the 

physical properties of dislocations ( Cottrell, 1952 ). However, in one physical aspect one can see some similarity between 

the redundant and immobile dislocations. It turns out that, as a rule, the redundant dislocations in unloaded crystals at 

low temperatures exist in form of dislocation dipoles in two-dimensional case or pairs of small planar dislocation loops of 

opposite Burgers vectors whose sizes is comparable with the atomic distance in three-dimensional case. The simple reason 

for this is that the energy of a dislocation dipole (or a pair of small planar dislocation loops) is much smaller than that 

of dislocations apart, so the bounded state of dislocations renders low energy to the whole crystal in equilibrium. From 

the other side, due to their low energy, the dislocation dipoles (loops) can be created (as well as annihilated) by thermal 

fluctuations or, alternatively, by the mutual trapping in a random way. The redundant dislocations play two important roles 

in the plastic deformations of crystals: (i) together with the Frank-Read source ( Hirth & Lothe, 1968 ) they provide additional 

sources for the nucleation of excess dislocations due to the fact that, when the applied shear stress becomes large enough, 

the dislocation dipoles dissolve to form the freely moving excess dislocations, (ii) the neutral dipoles (loops) of redundant 

dislocations act as obstacles that impede the motion of excess dislocations leading to the nonlinear work hardening. 

In view of their roles in ductile crystals, the account of redundant dislocations in the CDT would make the material mod- 

els more realistic. Since the statistical or spatial averaging procedures applied to ensembles of large numbers of dislocations 

are still in an embryonal stage (see the above cited references), various phenomenological approaches have been proposed 

in recent years. Arsenlis, Parks, Becker, and Bulatov (2004) developed a set of evolution equations for the densities of ex- 

cess and redundant dislocations within the crystal plasticity. The density of redundant dislocations evolves through Burgers 

vector-conserving reactions, while that of excess dislocations evolves due to the divergence of dislocation fluxes. Except the 

missing thermal fluctuations in the nucleation of redundant dislocations, it was also unclear whether such an approach 

could be related to the energetics of crystals containing dislocations. Berdichevsky (2006a) was the first who included the 

density of redundant dislocations in the free energy density of the crystal. However, to the best of our knowledge, the more 

pronounced influence of the redundant dislocations on the yield stress and the dissipation within the CDT has not been 

considered up to now. The aim of this paper is to propose a phenomenological continuum dislocation theory, whose dis- 

sipation function depending on the densities of both excess and redundant dislocations in such a way that the obtained 

yield stress combines the constant contribution due to the Peierls barrier and the Taylor contribution that is proportional 

to the square root of the total density of dislocations ( Taylor, 1934 ). Then we apply the proposed theory to the problem 

of anti-plane constrained shear. We solve this problem numerically and find the distribution of excess dislocations in the 

final state of equilibrium as well as the stress-strain curve. We show the size effect for the threshold stress, the nonlinear 

work hardening due to the combined excess and redundant dislocations, and the Bauschinger effect for the loading, elastic 

unloading, and loading in the opposite direction. 

The paper is organized as follows. In Section 2 the kinematics of CDT accounting for densities of excess and redundant 

dislocations is laid down. Section 3 proposes the thermodynamic framework for this type of CDT. In Section 4 the problem 

of anti-plane constrained shear is analyzed. Section 5 presents the numerical solution of this problem and discusses the 

distribution of excess dislocations, the stress-strain curve, the Bauschinger translational work hardening and the size effect. 

Finally, Section 6 concludes the paper. 

2. Kinematics 

In the following we restrict ourselves to the small strain (or geometrically linear) continuum dislocation theory for single 

crystals. For simplicity we shall use some fixed rectangular cartesian coordinates and denote by x the position vector of a 

generic material point of the crystal. Kinematic quantities characterizing the observable deformation of this single crystal 

are the displacement field u ( x ) and the plastic distortion field β( x ) that is incompatible. For single crystals having n active 

slip systems, the plastic distortion is given by 

β(x ) = 

n ∑ 

a =1 

βa (x ) s a � m 

a 

( 

βi j = 

n ∑ 

a =1 

βa s a i m 

a 
j 

) 

, (1) 

with βa being the plastic slip, where the pair of constant and mutually orthogonal unit vectors s a and m 

a is used to denote 

the slip direction and the normal to the slip planes of the corresponding a -th slip system, respectively. Thus, there are 

altogether 3 + n degrees of freedom at each point of this generalized continuum. Here and later, equivalent formulas for 
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