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It is obtained an expression for energy of a random set of dislocation lines. It is used 

to determine the characteristics of dislocation ensembles which can appear in continuum 

theory of dislocations. 
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1. Introduction 

One of the basic problems in modeling of plasticity of metals is an identification of state variables. The problem is not 

simple, because dislocation networks controlling the process of deformation are extremely complex random sets. Among 

recent works on this subject note the papers by Zaiser (2015) , Hochrainer (2015) , Hochrainer (2016) , Le (2016) , Mohamed, 

Larson, Tischler, and El-Azab (2015d) , Hochrainer, Sandfeld, Zaiser, and Gumbsch (2014) , Poh, Peerlings, Geers, and Swad- 

diwudhipong (2013a) , Poh, Peerlings, Geers, and Swaddiwudhipong (2013b) , Geers, Peerlings, Peletier, and Scardia (2013) , 

Mesarovic, Baskaran, and Panchenko (2010) , Zaiser and Hochrainer (20 06) , El-Azab (20 0 0) , Ghoniem, Tong, and Sun (20 0 0) . 

In this paper, some intrinsic probability characteristics of dislocation networks are introduced, and energy is found in terms 

of these characteristics from homogenization reasoning. The key role is played by dislocation density correlation tensor. Re- 

markably, it has a singularity. This simplifies the choice of approximations. A simple approximation of dislocation density 

correlation tensor is considered. It yields the formula for energy and the corresponding set of macroscopic state variables. 

An interesting outcome is a confirmation of the phenomenological assumption ( Berdichevsky, 20 06; 20 06a ) that averaged 

dislocation density tensor can enter into continuum theory of dislocations without a small parameter. A consequence is that 

applications of the theory are much broader than just description of size effects in strain gradient plasticity. 

We begin the consideration with a formula for energy of one dislocation line ( Section 2 ), then introduce intrinsic prob- 

ability characteristics ( Section 3 ), express energy in terms of these characteristics ( Section 4 ), introduce correlation tensor 

and it’s approximations ( Section 5 ), obtain the corresponding relations for energy ( Section 6 ), and discuss an alternative 

mechanism for dependence of energy on averaged dislocation density tensor in Section 7 . 

2. Energy of one dislocation loop 

Consider homogeneous anisotropic elastic body occupying an unbounded three-dimensional space R 3 . Let αij ( x ) be dis- 

location density tensor, Latin indices run through values 1, 2, 3, x denotes points in R 3 . Then elastic energy of the body has 
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the form (see, e.g. Mura, 1991 ), 

E = 

∫ 
R 3 

∫ 
R 3 

1 

2 

H 

mnpq 

(
x − ˜ x 

| x − ˜ x | 
)

1 

| x − ˜ x | αpm 

(x ) αqn ( ̃  x ) d V x d V ˜ x . (1) 

Here dV x and dV ˜ x are volume elements in x and ˜ x -variables, summation over repeated indices is implied, H 

mnpq ( 
−→ 

ξ ) is a 

tensor defined on unit vectors 
−→ 

ξ and expressed in terms of Green’s tensor. H 

mnpq ( 
−→ 

ξ ) are even functions of 
−→ 

ξ . The explicit 

form of H 

mnpq ( 
−→ 

ξ ) is not essential for what follows. 

For one dislocation loop � with Burgers vector b i , 

αi j (x ) = b i t j δ( �) , (2) 

t i is tangent vector to �, δ( �) delta-function of �, 

δ( �) = 

∫ 
�
δ3 ( x − r(s ) ) ds, 

x = r(s ) the parametric equations of �, s arc length on �, δ3 (x ) = δ1 (x 1 ) δ1 (x 2 ) δ1 (x 3 ) , x i are components of x, δ1 is one- 

dimensional delta-function. Note that ∫ 
R 3 

δ( �) dV x = | �| , (3) 

| �| being the length of �. 

Substitution of (2) in (1) yields a diverging integral, and a regularization of (2) is needed. As such we use the following 

construction: we embed � into a tube �a with a circular cross-section of radius a in such a way that � passes through the 

centers of cross-sections, and replace δ( �) in ( 2 ) by χ ( �a )/ πa 2 , where χ ( �a ) is the characteristic function of region �a , i.e. 

χ(�a ) = 1 inside of �a and χ ( �a ) is zero outside of �a . So, we set 

αij ( x ) = b i t j χ( �a ) /πa 2 , (4) 

and consider the limit a → 0. Obviously, for a → 0 ∫ 
R 3 

χ( �a ) 

πa 2 
dV = | �| . 

Parameter a plays the role of dislocation core radius. It is supposed to be chosen in such a way that elastic energy of the 

region �a coincides with energy of the dislocation core. Alternative ways of regularization have been reviewed and discussed 

by Cai, Arsenlis, Weinberger, and Bulatov (20 06) , see also Lazar and Maugin (20 05) , Lazar and Po (2014) , Aifantis (2009) , Po, 

Lazar, Seif, and Ghoneim (2014) . 

From (1) and (4) 

E = 

∫ 
�a 

∫ 
�a 

1 

2 

H 

mn 

(
x − ˜ x 

| x − ˜ x | 
)

1 

| x − ˜ x | t m 

(s ) t n 
(
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)
d sd s ′ d 

2 X 

π
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′ 
π

. (5) 

Here 

H 

mn = H 

mnpq b p b q , 

X 

μ are dimensionless Cartesian coordinates in cross-sections chosen in such a way that cross-section is determined by the 

inequality X 

μX μ ≤ 1. The determinant of the transformation to ( s, X )-coordinates is skipped in (5) because it is equal to 

unity in the limit a → 0. 

Various asymptotically equivalent approximations of energy for a → 0 can be used (see Cai et al., 2006 ). We will employ 

the following relation 

1 , which does not seem to have been known, 

E = 

∫ 
�

∫ 
�

1 

2 
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mn 

( −→ 
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(
s ′ 
)

− −→ 

r (s ) ∣∣−→ 

r ( s ′ ) − −→ 

r (s ) 
∣∣
) 

t m 

(s ) t n 
(
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)

ca + 

∣∣−→ 

r ( s ′ ) − −→ 

r (s ) 
∣∣d sd s ′ (6) 

where 

c = 

1 

2 

e −1 / 8 = 0 . 44 . 

Formula (6) follows from (5) and can be derived in the same way as the similar expression for kinetic energy of vor- 

tex filament in ideal incompressible fluid (see Berdichevsky, 2008, Berdichevsky, 2009 , p. 437–440) 2 . Note that the above- 

mentioned choice of a making elastic energy of region �a coinciding with energy of dislocation core yields the dependence 

1 In contrast to vectors associated with R 3 , like x and ˜ x in (5) , all vectors associated with dislocation lines are provided by arrow, like 
−→ 

r (s ) and 
−→ 

r (s ′ ) 
in (6) . 

2 Parameter a in dynamics of vortex filaments changes in the course of motion, therefore it was convenient to use a different asym ptotically equivalent 

form of energy when a is kept outside of integrals. 
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