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a b s t r a c t 

Unidirectional steady flow of Newtonian liquids with a pressure-dependent viscosity in a 

rectangular duct is considered. Governing momentum equation is reduced to a quasilinear 

second order elliptic partial differential equation. We give an analytical solution to the 

governing equation, and investigate the effect of aspect ratio and pressure coefficient on 

the velocity profiles numerically. 
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1. Introduction 

The viscosity of fluids, such as polymer melts and lubricants, depends strongly on temperature and to a lesser extent on 

pressure ( Rajagopal, 2006 ). In some cases the dependence of the viscosity on pressure may be several orders of magnitude 

stronger than that of density ( Rajagopal, 2006; Stokes, 1845 ). Stokes, in his famous paper ( Stokes, 1845 ), discusses the possi- 

bility that the viscosity of a fluid may vary with the pressure. Barus (1983) , and later on Bird, Amstrong, and Hassager (1977 ) 

(see also the book by Bridgman, 1931 ) experimentally showed that viscosity grows exponentially with increasing pressure. 

Further details and references to more recent experimental studies can be found in the book by Szeri (1998) and in the 

paper by Málek and Rajagopal (2007) that reflects the situation before 2006. Recent papers by Bair and Kottke (2003) and 

by Bair (2006) report even drastically faster dependence of the viscosity on the pressure. It should be noted that even at 

such higher pressures the variation in the density of most liquids, in comparison with the variations in the viscosity, is neg- 

ligible, as discussed in Rajagopal (2006 ) or Malek and Rajagopal (2007 ). As a consequence, these liquids can be modelled as 

incompressible materials. 

Mathematical issues arising in the case of incompressible Newtonian or non-Newtonian flows with a pressure-dependent 

viscosity have been addressed by Renardy (2003), Gazzola (1997), Hron, Málek, N ̌ecas, and Rajagopal (2003) and Málek, 

N ̌ecas, and Rajagopal (2002) . The existence of flows of fluids with pressure dependent viscosity and the associated assump- 

tions have been discussed by Bulíček, Málek, and Rajagopal (2008) . The properties of such solutions have been investigated 

by Málek and Rajagopal (2007) . 
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Hron, Málek, and Rajagopal (2001) were the first authors to show that steady unidirectional flow is possible if the de- 

pendence of the viscosity on the pressure is linear even if shear-thinning effects are included. However, they also show that 

for other forms of dependence of the viscosity on pressure, such as polynomial and exponential dependence, unidirectional 

flow is not possible. In the case of planar flows, a pressure driven parallel flow exists only if the dependence of viscosity 

on pressure is linear ( Renardy, 2003) . It turns out that in the case of linear dependence actually parallel flow always exists 

regardless of the cross-section of the pipe. Denn (1981) showed that the quadratic velocity profile in a circular pipe remains 

a solution if the viscosity is an exponential function of the pressure. As indicated by Renardy (2003) and also shown in 

the present work, the velocity profile is not parabolic in the case of linear dependence of the viscosity; it may be almost 

parabolic when this dependence is weak. According to Suslov and Tran (2008) , the major concern of linear dependence is 

that it does not guarantee positive definiteness of the viscosity which requires the pressure to remain positive. This problem 

is not encountered when using exponential dependence or in flows where the pressure remains positive, such as Poiseuille 

flows. More recently, Kalogirou, Poyiadji, and Georgiou (2011) obtained the analytical solution of axisymmetric, annular, and 

plane Poiseuille flows of Newtonian fluids with pressure-dependent viscosity with a linear dependence on viscosity, 

η( p ) = η0 ( 1 + βp ) (1.1) 

In this work, we consider laminar flow in a straight duct of rectangular cross-section of Newtonian fluids with pressure- 

dependent viscosity defined in ( 1.1 ). The rest of the paper is organized as follows: in Section 2 the governing equation, a 

quasilinear second order elliptic partial differential equation, derived from the linear momentum equation is presented and 

novel semi analytical results are obtained. In Section 3 , the results including the effects of the viscosity pressure-dependence 

is discussed. 

2. Governing equations 

We shall consider flow of an incompressible fluids whose Cauchy stress T is given by 

T = −pI + 2 η( p ) D (2.1) 

where 

D = 

1 

2 

[∇u + ( ∇u ) 
T 
]

(2.2) 

D is the rate-of-deformation tensor and u is the velocity vector. Then governing momentum equations becomes 

ρ

(
∂u 

∂x 
+ u . ∇u 

)
= −∇ p + η( p ) ∇ 

2 u + 2 η′ ( p ) ∇ p. D (2.3) 

We consider here flow of a fluid modelled by ( 2.1 ) in a straight duct with rectangular cross-section due to the prescribed 

values of the pressure at two different places along the duct or prescribed total flux and pressure value at one point. Flow 

is fully developed and unidirectional in the axial z -direction. The velocity vector is given by u = [ 0 , 0 , w ( x, y ) ] . Then the 

governing Eq. (2.3) reduces to, 

−∂ p 

∂x 
+ η0 β

∂ p 

∂z 

∂w 

∂x 
= 0 (2.4) 

−∂ p 

∂y 
+ η0 β

∂ p 

∂z 

∂w 

∂y 
= 0 (2.5) 

−∂ p 

∂z 
+ η0 β

∂ p 

∂x 

∂w 

∂x 
+ η0 β

∂ p 

∂y 

∂w 

∂y 
+ η0 ( 1 + βp ) 

(
∂ 2 w 

∂ x 2 
+ 

∂ 2 w 

∂ y 2 

)
= 0 (2.6) 

Substitution of ( 2.4 ) and ( 2.5 ) into ( 2.6 ) yields, 
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Governing field equations are rendered dimensionless using for scale factors the width L and the height H of the rect- 

angular cross-section, the mean velocity U , 3 η0 LU / H 

2 and the zero-pressure viscosity η0 for the transversal coordinates x, y , 

velocity w ( x, y ), pressure p and the viscosity η, respectively. The resulting dimensionless viscosity, the counterpart of ( 1.1 ) 

becomes, 

η∗ = 1 + ε p ∗, ε = 

3 βη0 U 

H 

, (2.8) 
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