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a b s t r a c t 

In the last decade there has been significant research activity in the use of Eringen’s 

nonlocal models to reformulate the equations of beams and plates. All of the previous 

works used a length scale parameter to study its effect on bending, buckling, and vibration 

characteristics, without identifying what the length scale parameter means. An attempt is 

made herein, for the first time, to relate the length scale parameter(s) to physical parame- 

ters. The Eringen’s non-local Euler–Bernoulli and Timoshenko beam models are identified 

as continuum limits of a discrete system comprising of harmonic oscillators. The corre- 

spondence between the coefficients of the discrete and the continuum models is used to 

determine the source of the non-locality in the context of Eringen’s non-local beams. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ever since Eringen (1972) , Eringen and Edelen (1972) hypothesized that the stress at a point is not only a function of 

the strain at that point but also strains over the whole domain of the continuum, many researchers utilized the model to 

study mechanical response of a variety of continuum problems. Starting from the wave dispersion phenomena by Eringen 

himself ( Eringen, 1983 ), the reformulated non-local laws have been applied to understand many important aspects in me- 

chanics, for example elasto-plasticity, mechanical properties of carbon nanotubes, biosensors, MEMS and so on, to name a 

few. For various applications one may refer to Lim, Zhang, and Reddy (2015) ; Najar, Nayfeh, Abdel-Rahman, Choura, and 

El-Borgi (2010) . Naturally it was important to derive the non-local versions of continuum elements like beams, plates, and 

shells, thanks to their usefulness in analyzing systems analytically or with drastically reduced computational overhead. In 

this direction, Reddy and his colleagues ( Fernández-Sáez, Zaera, Loya, & Reddy, 2016; Reddy, 2007 ) reformulated non-local 

beam theories along with their solutions to study various response behaviors, including bending, vibration, and buckling. 

As further developments, one may refer to Reddy and El-Borgi (2014) for nonlocal beam model including moderate rota- 

tion; ( Aydogdu, 2009; El-Borgi, Fernandes, & Reddy, 2015 ) for vibration studies of graded nano-beam and Najar, El-Borgi, 

Reddy, and Mrabet (2015) for the analysis of non-local beam-based eastostatic nano-actuators. Effect of non-locality in the 

context of non-linear analysis of Timoshenko beam model is considered in Kasirajan, Amirtham, and Reddy (2015) . Nonlocal 

plate theory is developed in Lu, Zhang, Lee, Wang, and Reddy (2007) ; Reddy, Romanoff, and Loya (2016) . Specifically, in 

Raghu, Preethi, Rajagopal, and Reddy (2016) shear deformation for nonlocal laminated plates is discussed. Nonlocal studies 
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in the beams and the plates made by functionally graded materials are reported in Reddy et al. (2016) and Reddy (2014) . 

More works in similar directions may be found in Khodabakhshi and Reddy (2015) ; Wang, Zhang, Ramesh, and Kitipornchai 

(2006) . 

It is by now well observed that, as the system dimension reduces, non-local macro-continuum models start varying 

significantly from their classical counterparts. While there has been a considerable amount of work to bring out the non- 

local effects in the reformulated macro-continuum models ( Eringen, 1972, 1983; Eringen & Edelen, 1972; Lu et al., 2007; Ma, 

Gao, & Reddy, 20 08; Reddy, 20 07, 2010 ), the source of non-locality seems to be not understood well. The present manuscript 

attempts at filling this gap in the context of non-local Euler–Bernoulli beam theory (EBT) and non-local Timoshenko beam 

theory (TBT). The main idea is to identify these non-local beams as the continuum limit of a discrete system comprising 

of harmonic oscillators. While a phenomenon like bending is typically a manifestation of multi-layered atomic interaction, 

we are interested in a 1-dimensional model to capture it. Specifically, we want to find a discrete system comprised of a 

chain of particles that converges to beam models in the continuum limits. In this work it is identified that a system, where 

each such particle behaves like a harmonic oscillator, indeed approaches Eringen’s non-local EBT and TBT in the continuum 

limits. Noting that the discrete model using harmonic oscillators successfully captures bending phenomena in the context 

of beam elements, similar models should be useful in describing behavior of other solid structures, which predominantly 

demonstrates bending behavior. 

Given that the response behavior of harmonic oscillators can be described using well understood parameters, this discrete 

model turns out to be particularly useful in understanding the non-local parameters of the continuum models. Subsequently, 

we can describe a non-local parameter in the beam models as a function of well understood variables. The present work also 

challenges the traditional notion of incorporating a single parameter to describe non-locality in a continuum beam model by 

showing that there are multiple non-locality parameters and they have different origins. We observe that the non-locality 

parameters are not only nonlinear functions of lattice distance but they depend on other properties of the body. These facts 

potentially necessitate the reformulation of all the continuum models considering appropriately placed multiple non-locality 

parameters. 

The rest of the manuscript is organised as follows. In Section 2 , a discrete system is demonstrated to approach the non- 

local EBT in the continuum limit. In the process, the source of non-locality in the context of the EBT is identified. A similar 

exercise for the TBT is carried out in Section 3 . Finally, some conclusions and a discussion on future extensions is presented 

in Section 4 . 

2. EBT: discrete to continuum limit 

Consider a system of N harmonic oscillators, as shown in Fig. 1 . The dotted lines indicate the initial positions of the 

particles. A force of Q j is applied on particle p j , resulting a displacement w j in the direction of the force. The solid lines 

indicate the positions after motion ensues. We shall show shortly that the Lagrangian corresponding to the system shown 

in Fig. 1 describes, in the continuum limit, the response of the EBT. In this context, it is convenient to define a number of 

variables that will be used in writing the Lagrangian of the discrete system. The displacement in the direction of the exter- 

nally applied force Q j on the discrete particle p j ( j = 1 , 2 , . . . , N) is denoted by w j , as shown in Fig. 1 . Harmonic oscillator p j 

vibrating with velocity v j is assigned a mass M 0 and mass inertia I 0 . Adjacent oscillators share a common mass M 2 and mass 

inertia I 2 . The angle of rotation of the p j th particle from its initial equilibrium position is denoted by θ j , which characterizes 

the curvature angle of the particle. The corresponding radius of curvature is denoted by l j . Each particle p j experiences a 

tension 

ˆ T j along the arm connecting the particle, as shown in the Fig. 2 . The vertical component of ˆ T j is denoted by T j and 

the horizontal component by T s 
j 
. Since we assume that θ j is small, the horizontal tension component T s 

j 
drops out of the 

analysis. 

Potential energy for the discrete system of harmonic oscillators may be written as 

�d = 

N−1 ∑ 

j=2 

T j l j 
(
1 − cos θ j 

)
−

N ∑ 

j=1 

Q j w j (1) 

Fig. 1. A System of harmonic oscillators. 
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