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a b s t r a c t

In this paper a unified integro-differential nonlocal elasticity model is presented and its use
in the bending analysis of Euler–Bernoulli beams is illustrated. A general (for an elastic
continuum) finite element formulation for the two-phase integro-differential form of
Eringen nonlocal model is provided. The equations are specialized for the case of the
Euler–Bernoulli beam theory. Several numerical examples, including the paradoxical can-
tilever beam problem that eluded other researchers, are provided to show how the present
nonlocal model affects the transverse displacement of beams. The examples show that
Eringen nonlocal constitutive relation has a softening effect on the beam, except for the
case of the simply supported beam. A brief discussion on the applicability of the
integro-differential model to other problems is also presented. Finally, the transition from
the stiffened nonlocal simply supported beam to the softened nonlocal clamped beam is
also investigated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For hyperelastic materials (i.e., Green elastic materials) there exists a potential function whose derivative with respect to
the strain at a point gives the corresponding stress at that point (Reddy, 2013). This forms the basis for local (conventional)
constitutive model where the stress and strain at each point are related. Local theory of continuum mechanics is inherently
scale free, i.e. forces are only transferred through contact and no long-range forces between points located further apart is
considered. However, there exists certain phenomena (e.g., dispersion of elastic waves, crack propagation in fracture
mechanics, dislocations, and so on) that cannot be explained using local theory of elasticity. In addition, as a consequence
of recent developments in the field of material science there is a need to model the structural response of a variety of
new materials that require the consideration of nonlocal aspects of the material (e.g. size effect in nanomaterials). In non-
local theories, stress at each point is influenced by the strain at all points in the domain. This influence decreases as the dis-
tance between the points increases. The concept of nonlocal theory of linear elasticity was initially introduced in papers by
Kröner (1967), Krumhansl (1968) and Kunin (1968). Later, the idea of long-range interactions was further developed in the
works of Eringen (1972b, 1972a, 1983, 2002) and Eringen and Edelen (1972). Eringen (1983) introduced an
integro-differential nonlocal model which has widely been used in the literature. Later, Eringen proposed a two-phase non-
local model (Eringen, 1987) which was a combination of local and integro-differential nonlocal constitutive theories. One of
the advantages of an integral nonlocal theory over the local elasticity theory is that the former gives non-singular results for
geometric singularities (i.e. cracks) due to the averaging effect inherent in the integral form of the constitutive relation.
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The nonlocal integral constitutive equation makes use of a positive distance-decaying kernel function which specifies the
dependence of stress at each point on the strain at other points in the domain. Eringen (1983) showed that for a specific class
of kernel functions the Eringen nonlocal integral constitutive equation can be transformed into a differential form with the
exact same properties. Due to the difficulties in using integral constitutive equations, the nonlocal differential model pro-
posed by Eringen (1983) is the one most widely used in the literature to account for nonlocal effects. Several studies have
been reported on the basis of nonlocal theories. Peddieson, Buchanan, and McNitt (2003) used the Eringen nonlocal differ-
ential model to derive the equations of equilibrium for a nonlocal Euler–Bernoulli beam. This study (Peddieson et al., 2003)
was pioneering in the sense that Eringen nonlocal differential model was used to incorporate nonlocal effects into the anal-
ysis of structural elements. One of the main issues that was discussed in the work of Peddieson et al. (2003) was the fact that
in nonlocal cantilever beams (enhanced with Eringen’s differential model) nonlocal effects were not triggered for point loads
applied at the free end. This is not a desirable outcome, because recently cantilever beams of micro- and nano- size have
found several applications as actuators and sensors in the field of chemical and biological sciences (Ekinci & Roukes,
2005; Lavrik, Sepaniak, & Datskos, 2004; Pei, Tian, & Thundat, 2004; Pereira, 2001). If a nonlocal model is not capable of
capturing the size effect in these nano- and macro-cantilever beams, then the data obtained by these devices may not be
interpreted correctly.

Other examples of nonlocal Euler–Bernoulli beam studies were presented in Sudak (2003), Challamel and Wang (2008),
Lu, Lee, Lu, and Zhang (2006) and Shakouri, Lin, and Ng (2009). Challamel and Wang (2008) also pointed to the deficiency
mentioned in Peddieson et al. (2003) and suggested the integration of gradient elasticity model with Eringen nonlocal model
to eliminate it. Shakouri et al. (2009) gave a discrete formulation for nonlocal Euler–Bernoulli beam representation of the
double-walled carbon nanotubes using the Galerkin method. Wang, Kitipornchai, Lim, and Eisenberger (2008, 2006),
Wang and Wang (2007) and Wang and Liew (2007) integrated Timoshenko beam theory with Eringen nonlocal model.
The main problem with these works (Wang et al., 2008; Wang & Liew, 2007; Wang & Wang, 2007; Wang et al., 2006) is that
nonlocal effects are only limited to normal stresses and not transverse shear stresses. Reddy (2007) used Eringen nonlocal
model to give the variational statements for several beam theories, namely the Euler–Bernoulli, Timoshenko, Reddy and
Levinson beam theories. In this comprehensive study (Reddy, 2007) the above-mentioned limitation imposed in the works
of Wang et al. (2008), Wang et al. (2006), Wang and Liew (2007) and Wang and Wang (2007) is removed and nonlocal effects
are included in both normal and transverse shear stresses. Analytical solutions of static bending, vibration, and buckling of
the beams are also provided in this study. Later, Reddy (2010) formulated the governing equations for the bending of beams
(Euler–Bernoulli and Timoshenko beam theories) and plates (Classical and first order shear deformation plate theories)
which also took in account von Kármán nonlinearity. Reddy (2010) stated that no quadratic functional can be derived for
the differential form of Eringen nonlocal beam theory from which the governing equations can be derived. Thai (2012)
and Thai and Vo (2012) recently provided a higher order nonlocal beam theory which is slightly different from Reddy beam
theory which also accounted for variation of shear stress along the height of the beam. Reddy and El-Borgi (2014) provided
the governing equations for bending of nonlocal Euler–Bernoulli and Timoshenko beam theories accounting for moderate
rotations through modified von Kármán nonlinearity. Several studies have also applied Eringen nonlocal model to the study
of functionally graded beams (Reddy, El-Borgi, & Romanoff, 2014; Rahmani & Pedram, 2014; Salehipour, Shahidi, & Nahvi,
2015). Studies on nonlocal beam theories based on the differential model are far more exhaustive to be reported here.
Interested readers may consult (Reddy & El-Borgi, 2014; Reddy, El-Borgi, & Romanoff, 2014).

In all of the above-mentioned references, the differential form of the Eringen model had been used. Polizzotto (2001)
applied the integral form of Eringen model and derived the variational principles governing the integral form from which
the nonlocal finite element formulation is obtained. The kernel function in the integral constitutive equation brings in a con-
cept of a length scale. Pisano and Fuschi (2003) used the approach proposed by Polizzotto (2001) to derive a closed-form
solution for a bar in tension with nonlocal Eringen model as the constitutive equation. Later, Pisano, Sofi, and Fuschi
(2009) used this integro-differential nonlocal model to give a finite element formulation for 2D problems of two-phase elas-
tic materials (Eringen, 1987). Di Paola, Failla, Sofi, and Zingales (2011) came up with a new method to introduce long-range
forces into the equations of motion. General 3D variational statements were constructed and they were further simplified for
the Timoshenko beam theory. The formulation proposed by Di Paola et al. (2011) is conceptually similar to the formulation of
peridynamic theory proposed by Silling (2000).

It is found by several authors that Eringen’s differential model yields inconsistent results for a cantilever when compared
to other boundary conditions (Challamel & Wang, 2008; Challamel et al., 2014; Peddieson et al., 2003; Wang & Liew, 2007;
Wang et al., 2008). For all boundary conditions except the cantilever, the model predicts softening effect (i.e., larger defec-
tions and lower fundamental frequencies) as the nonlocal parameter is increased. Several ad hoc approaches or explanations
have been proposed to alleviate the baffling case of the cantilever beam. In the present study, classical theory of elasticity is
augmented with Eringen’s nonlocal model in integral form to present a unified integro-differential model for nonlocal elas-
ticity and a general finite element formulation for the integral form of Eringen nonlocal model. Note that by using the
two-phase Eringen model (Eringen, 1987), two control parameters will exist, namely the length scale parameter and phase
parameter. The general 3D equations are further simplified to the one-dimensional case of the Euler–Bernoulli beam theory.
Several examples are provided to show how Eringen nonlocal model affects the transverse displacement of the beams. In this
study, the kernel function used in the integral constitutive equation is different from that of which yields into Eringen’s dif-
ferential equation (Eringen, 1983). It is shown that the proposed nonlocal model yields consistent results for most boundary
conditions (including the paradoxical case of a cantilever beam), however, the results are slightly different for the case of a
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