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a b s t r a c t

The occurrence of heterogeneous perturbations of fluid mass density and solid elastic strain

of a porous continuum, as a consequence of its undrained response is a very important topic

in theoretical and applied poromechanics. The classical Mandel-Cryer effect provides an ex-

planation of fluid overpressure in the central region of a porous sample, immediately after

the application of the loading. However this effect fades away when the fluid leaks out of the

porous network. Here this problem is studied within the framework of a second gradient the-

ory and a thorough description of the static and the dynamics of the phenomenon is given.

We study how the presence of an impermeable wall affects the formation of the interface

between two phases differing in the fluid content. Moreover, we show that the late time in-

terface motion towards its stationary position is not affected by the impermeable wall and is

characterized by a common seepage velocity profile.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When a mechanical pressure is exerted on the solid skeleton of a porous medium and its elastic strain is a consequence of

the variation of the fluid mass content inside the pores, several interesting phenomena can occur which accompany shrinkage or

swelling of the solid skeleton. The focus, here, is on the occurrence of heterogeneous perturbations of the fluid mass density and

the skeleton elastic strains, as a consequence of the undrained response of the porous medium. The classical Mandel-Cryer effect,

see (Mandel, 1953) and (Cryer, 1963), provides an explanation, within multidimensional consolidation, of fluid overpressure, in

the central region of the sample, immediately after the application of the loading. However, in that case this is a definitely non-

permanent effect which fades away when the fluid leaks out the boundary and the pore pressure reverses and dissipates. The

physical background of the Mandel-Cryer effect is that the generation of fluid over-pressure due to loading is immediate, but the

dissipation due to the fluid flow is retarded by the permeability and the distance to the drainage boundary. On the other hand

several authors discussed the onset of strain localization during globally undrained triaxial tests, in particular for loose granular

materials, see e.g., Mokni and Desrues (1998); Mooney, Viggiani, and Finno (1997), or Sulem and Ouffroukh (2006). In this case

local fluid exchange is allowed, even in presence of localized strain, inside the specimen until, at high level of confinement, the

pore pressure generation inside the band leads locally to fluidization of the crushed material, which results into the formation of

connected channels in the heart of the band. Similar confinement effects have also been recorded in a fluidized column test, see

(Nichols, Sparks, & Wilson, 1994), where a fluid is forced to flow through a saturated sample from the bottom. By tuning the
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velocity of the fluid, the drag force acting on the solid grains, possibly causing unbalance of gravity force, is controlled

(Vardoulakis, 2004a; 2004b). These experimental results demonstrate that under consolidation loading, and because of porosity

change, the fluid can migrate through the pores and eventually remain segregated, possibly enhancing localized overpressuriza-

tion and fluidization of the soil, see e.g. Kolymbas (1994); Nichols et al. (1994). These porosity modulations have been observed

in Holcomb and Olsson (2003); Olsson and Holcomb (2000), during the consolidation process of a sandstone, and in Lenoir,

Andrade, Sun, and Rudnicki (2010) at stationarity.

In the papers Cirillo, Ianiro, and Sciarra (2009, 2010, 2011) and Cirillo, Ianiro, and Sciarra (2013) we have attacked this problem

from the point of view of bifurcation theory and we have shown that it is possible to describe interesting phenomena (still in the

range of non-linear elasticity) taking place when the confining pressure exerted on the solid exceeds a suitable limiting value.

The idea is to get a formulation capable for describing the onset of a fluid-rich and a fluid-poor phase, eventually coexisting

inside the porous skeleton at equilibrium. Introducing a non-local energy contribution, which penalizes gradients of strain and

fluid mass density, a smooth transition between phases of the porous medium, associated with different fluid content, has been

modeled, so accounting for the arising of the above mentioned heterogeneous elastic strains. Undrained conditions are therefore

locally achieved where fluid segregation is attained, even if a standard Darcean dissipative process, associated to the fluid flowing

out of the drainage boundary, occurs.

Assuming the potential energy to be quadratic in the first derivatives of the strain and of the fluid mass density variation,

the evolution is described by a Cahn-Hilliard-like equation provided that the dissipative forces are proportional to the seepage

velocity, say the velocity of the fluid with respect to the solid. This means that the above mentioned assumption of Darcean flow

still remains valid.

Within this modeling framework, a generalized consolidation problem for a one-dimensional porous continuum is analyzed

so extending the classical results due to Terzaghi and those ones, relative to a gradient model, previously obtained by one of

the authors, and coworkers (Sciarra, Dell-Isola, Ianiro, & Madeo, 2008), in which only the fluid-poor phase was admissible at

equilibrium. The equation governing the behavior of the fluid constituent is of higher (fourth) order with respect to the Laplace

equation which classically prescribes the behavior of the pore-water pressure. Following previous results reported in Cirillo et al.

(2013), different boundary conditions can be considered, in particular essential or natural boundary conditions on the velocity of

the fluid relative to the solid and on the fluid chemical potential as well as on the fluid mass density or on its spatial gradient. The

dependence of the boundary value problem on higher order derivatives has been taken into account. Here we shall address the

two cases in which zero chemical potential, see Section 2.4, or zero fluid velocity, say impermeability of the porous skeleton, see

Section 2.5, have been assumed on the whole or part of the boundary, together with essential boundary conditions on the strain

of the solid and the density of the fluid. As already mentioned the interest will be in the occurrence of heterogeneous elastic

strains of the solid skeleton and variations of the fluid density; the confining pressure is therefore chosen so as to guarantee the

coexistence of phases and, consequently, the onset and the propagation, up to its stationary placement, of the interface between

them, see (Cirillo, Ianiro, & Sciarra, 2012). In these two cases we describe the formation of the interface between the phases

and its motion towards its stationary location. In particular, we show that the late time interface motion towards its stationary

position is not affected by the impermeable wall and is characterized by a common seepage velocity profile.

2. The model

We introduce the one dimensional poromechanical model (Cirillo et al., 2013) whose geometrically linearized version will be

studied in the following sections. Kinematics will be briefly resumed starting from the general statement of the model (Coussy,

2004) together with some particular issue introduced in Sciarra et al. (2008). The equations governing the behavior of the porous

system will then be deduced prescribing the conservative part of the constitutive law through a suitable potential energy density

� and the dissipative contributions through purely Darcy terms.

2.1. Poromechanics setup

Let Bs := [�1, �2] ⊂ R, with �1, �2 ∈ R, and Bf := R be the reference configurations for the solid and fluid components (Coussy,

2004). The solid placementχs : Bs × R → R is a C2 function such that the map χ s( ·, t), associating to each Xs ∈ Bs the position

occupied at time t by the particle labeled by Xs in the reference configuration Bs, is a C2-diffeomorphism. The fluid placement map

χf : Bf × R → R is defined analogously. The current configuration Bt := χ s(Bs, t) at time t is the set of positions of the superposed

solid and fluid particles.

Consider the C2 function φ : Bs × R → Bf such that φ(Xs, t) is the fluid particle that at time t occupies the same position of

the solid particle Xs; assume, also, that φ( ·, t) is a C2-diffeomorphism mapping univocally a solid particle into a fluid one. The

three fields1χ s, χ f, and φ are not at all independent; indeed, by definition, we immediately have that χf(φ(Xs, t), t) = χs(Xs, t)

for any Xs ∈ Bs and t ∈ R.

The Lagrangian velocities are two maps associating with each time and each point in the solid and fluid reference space the

velocities of the corresponding solid and fluid particles at the specified time. More precisely, the Lagrangian velocities are the two

1 In the sequel we shall often use the inverse functions of the field χ f , χ s, and φ with respect to the solid and fluid reference configuration. We shall misuse

the notation and let φ−1(·, t) be the inverse of the map Xs → φ(Xs, t) at a given time t. Similarly we shall also consider χ−1
s (·, t) and χ−1

f
(·, t).



Download	English	Version:

https://daneshyari.com/en/article/824756

Download	Persian	Version:

https://daneshyari.com/article/824756

Daneshyari.com

https://daneshyari.com/en/article/824756
https://daneshyari.com/article/824756
https://daneshyari.com/

