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a b s t r a c t

The objective of this paper is to develop a new unified theoretical structure for modeling
interstitial growth and muscle activation in soft tissues. The model assumes a simple con-
tinuum with a single velocity field. In contrast with many other formulations, evolution
equations are proposed directly for a scalar measure of elastic dilatation and a tensorial
measure of elastic distortional deformation. The evolution equation for elastic dilatation
includes a rate of mass supply or removal that controls volumetric growth and causes
the elastic dilatation to evolve towards its homeostatic value. Similarly, the evolution
equation for elastic distortional deformation includes a rate of growth that causes the
elastic distortional deformation tensor to evolve towards its homeostatic value. Specific
forms for these inelastic rates of growth and the associated homeostatic values have been
considered for volumetric, area and fiber growth processes, as well as for muscle activation.
Since the rate of growth appears in the evolution equations and not a growth tensor it is
possible to model the combined effects of multiple growth and muscle activation mecha-
nisms simultaneously. Also, robust, strongly objective, numerical algorithms have been
developed to integrate the evolution equations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biological tissues are complicated materials which are mixtures of many components that can flow relative to each other
and interact mechanically, chemically and electrically (e.g. Humphrey & Rajagopal, 2002; Ateshian, Costa, Azeloglu,
Morrison, & Hung, 2009; Ambrosi et al., 2011; Ateshian, Morrison, Holmes, & Huang, 2012; Sciume et al., 2013). From the
point of view of continuum mechanics it is natural to model these tissues using mixture theory (e.g. Green & Naghdi,
1965, 1967; Ateshian & Humphrey, 2012). However, complications of multiple flow fields and constitutive equations for
mechanical, biochemical and electrical coupling of the components in the mixtures make progress using this approach slow.
Also, the numerical implementation of these equations for the large deformations experienced by soft biological tissues is
challenging.

The equations of mixture theory can be simplified considerably by assuming that all components move with the same
velocity field. An example of such a mixture theory, where the components can be produced and removed potentially in
different stressed configurations, is given in Humphrey and Rajagopal (2002). They discussed a number of critical ingredients
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needed for a phenomenological theory of growth but they only presented an outline of possible constitutive equations.
Within the context of this approximation, the composite material can be treated as a simple continuum with constitutive
equations for the individual components that can interact or with a constitutive equation for a homogenized mixture that
attempts to model the main responses of the tissue. Assuming that the velocity field and its spatial gradient are continuous
and bounded and using the fact that a material point has a single velocity, it is possible to define a one-to-one mapping
between the position of a material point in any reference configuration and its current position. Consequently, it is possible
to define a material region which contains the same material points for all time. Moreover, in this approach the material
region can still be modeled as an open system in the sense that mass can be supplied or removed at each material point.
More complicated motions of growing materials have been discussed by Cowin (2010).

Taber (1995) presented a review of the literature related to growth, remodeling and morphogenesis of biological tissues.
He connected growth with change in mass, remodeling with change in material properties and morphogenesis with change
in shape. He also stated that these processes are linked in general but are usually treated separately. Hsu (1968) is one of the
first researchers to study the influence of mechanical loads on growth, which was modeled using both an external volume
mass supply term and a mass flux that controls mass diffusion. Moreover he used the analogy of creep in metals and referred
to growth as ‘‘a slow deviation of the body from its original form. . .’’. Within the context of thermodynamics with chemical
reactions, Cowin and Hegedus (1978) developed a finite deformation theory of elasticity with growth and remodeling of
bone due to mass changes. Although this theory was developed for finite deformations, bones typically experience only small
strains before they fracture. In contrast, soft tissues truly experience large deformations so it is important that models for
soft tissues be developed within the context of a finite deformation theory. Skalak (1981) and Skalak et al. (1982) presented
a finite deformation theory of volumetric and surface growth of biological tissues. Cowin (1986) studied remodeling of bone
within the context of small deformation anisotropic elasticity in which the stress tensor was an isotropic function of the
strain tensor and a fabric tensor. In this theory the stress vanishes when the strain vanishes so that growth and morphogen-
esis cannot be modeled.

As mentioned previously, Hsu (1968) made connections between growth and plasticity of metals. Rodriguez, Hoger, and
McCulloch (1994) developed equations for finite deformation growth of soft tissues which have a similar structure to those
used to model plasticity of metals. These equations can model the changing shape of the material in its unstressed interme-
diate configuration. Lubarda and Hoger (2002) considered a generalized finite deformation theory of growth. They developed
constitutive equations within the context of a thermomechanical theory with chemical energy transfer. In both of these
works (Rodriguez et al., 1994; Lubarda & Hoger, 2002) it was assumed that the stress T depends on an elastic deformation
tensor Fe, which can be defined in terms of the total deformation gradient F and a growth deformation tensor Fg by the
multiplicative form

Fe ¼ FF�1
g : ð1:1Þ

The growth tensor Fg is determined by integrating an evolution equation

F
�

g ¼ KgFg; ð1:2Þ

where a superposed ð�Þ denotes material time differentiation, Kg requires a constitutive equation and in this text no sum is
implied on repeated indices (e,g,p,h). Furthermore, using the definition of the velocity gradient L and the derivative of the
inverse of Fg

L ¼ F
�

F�1;
d
dt

F�1
g

� �
¼ �F�1

g Kg; ð1:3Þ

it can be shown that the elastic deformation tensor Fe satisfies the evolution equation

F
�

e ¼ ðL � LgÞFe; ð1:4Þ

where Lg takes the form

Lg ¼ FeKgF�1
e : ð1:5Þ

Eq. (1.4) has the same form as the evolution equation introduced by Besseling (1966) for characterizing the rheology of elas-
tically anisotropic elastic–plastic materials.

Lubarda and Hoger (2002) proposed elastically orthotropic constitutive equations in which the Helmholtz free energy w
(per unit mass) depended on invariants of the deformation tensor Ce defined by

Ce ¼ FT
eFe; ð1:6Þ

and two structural tensors. Moreover, the functional form for w was restricted so that the material is stress-free in its inter-
mediate configuration with

T ¼ 0 for Ce ¼ I; ð1:7Þ

which means that stress vanishes when Fe is equal to a proper orthogonal rotation tensor.
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