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a b s t r a c t

It is often assumed in the literature that the nine classical strain invariants, which are used to

characterize the strain energy of a compressible anisotropic elastic solid with two preferred

non-orthogonal directions are independent. In this paper, it is shown that only six of the clas-

sical strain invariants are independent, and syzygies exist between the classical invariants.

Alternatively, using principal axis techniques, it is simply proven that, only six of the clas-

sical strain invariants are independent and syzygies exist between the principal axis strain

invariants. Consequently, all other sets of strain invariants, proposed in the literature, which

are uniquely related to the set of principal axis strain invariants, have only six independent

invariants. Due to syzygies, it is shown that the number of ground state constants required to

fully describe the quadratic linear strain energy function of two-fibre solids is fourteen, not

thirteen, as assumed in the literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Following the work of Spencer (1984), a strain energy function WF of a compressible elastic material with two preferred unit

directions a and b can be expressed as

WF = W(C, a ⊗ a, b ⊗ b), (1)

where C is the right Cauchy–Green deformation tensor and ⊗ denotes the dyadic product. W is an isotropic invariant function of

C, a ⊗ a and b ⊗ b, i.e.,

W(C, a ⊗ a, b ⊗ b) = W
(
QCQ T

, Q(a ⊗ a)Q T
, Q(b ⊗ b)Q T

)
(2)

must be satisfied for all proper orthogonal tensors Q. It follows that the strain energy function We can be expressed in terms of a

set of invariants

SB = {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}, (3)

where

I1 = tr(C), I2 =
I2
1 − tr

(
C2

)
2

, I3 = det(C), I4 = a • Ca, (4)
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I5 = a • C2a, I6 = b • Cb, I7 = b • C2b , I8 = (a • b)a • Cb, (5)

I9 = (a • b)
2 �= 0, I10 = (a • b)a • C2b (6)

and tr denotes the trace of a second order tensor. The invariant I9 is independent of strain and hence the set

SC = {I1, I2, I3, I4, I5, I6, I7, I8, I10} (7)

of 9 invariants is commonly used to describe the strain energy function (see Spencer, 1984). In this paper, we show that only seven

of the the 10 invariants in (3) are independent or six of the nine invariants in (7) are independent. In the case when the preferred

directions are orthogonal, I8 = I9 = I10 = 0, Shariff (2013) has shown that only six of the seven invariants Ij, j = 1, 2, 3, . . . , 7 are

independent. In Section 2, the proof is presented using a set of principal axis invariants, while in Section 3 the proof is done

directly using the definition of the invariants given in (4)–(6). In Section 4, the consequences of the syzygies on the number of

ground state constants are discussed via linear elasticity theory.

Preliminary concepts: Functional and integrity bases, syzygy

Let us review some concepts given, for example, in Zheng (1994), Spencer (1971) and Xiao (1996). Consider a set of isotropic

invariants I1, . . . , Ik of the tensors C, a ⊗ a and b ⊗ b (denoted by S).

1. Any single-valued function of I1, . . . , IB

f (S) = g(I1, , . . . IB) (8)

is called a representation for isotropic scalar-valued functions of S . If one of the invariants in the set {I1, . . . , IB} is expressible

as a single-valued function of the remainders, the invariant is said to be functionally reducible. The representation is said

to be complete, if any isotropic scalar-valued function of S can be expressed in the form (8). A functional basis for isotropic

scalar-valued functions of S is the set of invariants in a complete representation for isotropic scalar-valued functions of S .

A functional basis is said to be irreducible, if none of its proper subsets is a functional basis.

2. If the function f (S) is restricted to polynomial functions, then integrity bases are dealt with. A polynomial invariant is

said to be reducible if it can be expressed as a polynomial in other invariants; otherwise, it is said to be irreducible. A set SP

of polynomial invariants which has the property that any polynomial scalar function can be expressed as a polynomial in

members of the given set, is called an integrity basis. The integrity basis is said to be minimal, if none of its proper subset is

an integrity basis. It frequently happens that polynomial relations exist between invariants which do not permit any one

invariant to be expressed as a polynomial in the remainder. Such relations are called syzygies.

3. An minimal integrity basis is not necessarily an irreducible functional basis, and the later, in general, contains fewer ele-

ments than the former.

2. Proof using principal axis invariants that only seven(six) of the ten(nine) invariants are independent

In this paper all subscripts i and j take the values of 1, 2 and 3, unless stated otherwise. If we write

C =
3∑

i=1

λ2
i ei ⊗ ei (9)

where λi and ei, i = 1, 2, 3 are the principal values and the principal directions of the right stretch tensor U, respectively, and

substitute (9) in (4)–(6), we have the expressions:

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = (λ1λ2λ3)

2
, (10)

I4 = λ2
1ζ1 + λ2

2ζ2 + λ2
3ζ3, I5 = λ4

1ζ1 + λ4
2ζ2 + λ4

3ζ3, (11)

I6 = λ2
1ξ1 + λ2

2ξ2 + λ2
3ξ3, I7 = λ4

1ξ1 + λ4
2ξ2 + λ4

3ξ3, (12)

I8 =
3∑

i=1

λ2
i χi, I9 = (a • b)

2
, I10 =

3∑
i=1

λ4
i χi, (13)

where

ζi = (a • ei)
2
, ξi = (b • ei)

2
, χi = (a • b)(a • ei)(b • ei) i = 1, 2, 3. (14)

The thirteen terms

λi, ζi, ξi, χi (i = 1, 2, 3), α = I9 = (a • b)
2

(15)

are invariants with respect to all proper orthogonal tensors Q. We note that if we write the strain energy function in the principal

axis form, i.e.,

WF = W(λ1, λ2, λ3, e1 ⊗ e1, e2 ⊗ e2, e3 ⊗ e3, a ⊗ a, b ⊗ b), (16)
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