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a b s t r a c t

The paper presents a solution to the problem of an infinite beam of finite width resting on a

poroelastic subgrade. The basic concepts of the elasticity solution are reviewed and the formu-

lation is extended to consider the interaction between the infinite beam and a Biot poroelastic

halfspace. A combination of Fourier and Laplace transforms are used to solve the problem.

The influence of adhesion and drainage effects is accounted for by considering bounding tech-

niques for prescribing the boundary conditions on the interface. The results of the analytical

solution are used to validate the accuracy of a computational approach that uses a standard

multi-physics scheme.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the flexure of a Bernoulli–Euler beam resting on a deformable medium is a seminal problem that has a wide

range of applications in applied mechanics, material science and geomechanics. The deformability of the supporting medium

has been approximated by several elementary structural models involving elastic support, ranging from the model consisting of

an array of independent spring elements (or piano keys) generally attributed to Winkler (although analogous treatments of the

problem can be traced back to the works of Zimmermann, Euler, Bubnov and Hertz (see e.g. Hetényi, 1946; Selvadurai, 1979), to

the continuum model (Biot, 1937) with the structural models by Vlazov and Leontiev (1966) and Reissner (1958) occupying an

intermediate position. Biot (1937) makes the comment “A serious objection can be made to the simplifying assumption on which

this (Winkler’s) elementary theory is based, because it is obvious that the reaction does not depend on the local deflection alone.” The

references to articles covering the topic are quite extensive and no attempt will be made to provide a comprehensive review. The

reader is referred to the review articles and texts by Kany (1959), Korenev (1960), Hetényi (1966), Panc (1975), Selvadurai (1979,

2007), Gladwell (1980) and Aleynikov (2011) for advances in the topic. With the Winkler-type elastic support, the problem of

the loaded beam on a spring elastic foundation has an elementary solution and an extensive collection of results are given by

Hetényi (1946) and Selvadurai (1979). The problem can also be solved in compact form for the case of an elastic continuum

where the flexure of the beam and the behavior of the continuum correspond to either a state of plane strain or generalized plane

stress.

The problem is, however, not so straight forward when the beam has a finite width and rests on a complete elastic halfspace.

In the treatment of such a problem it is usually assumed that the cross section of the beam imposes a constant displacement
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boundary condition and the beam experiences flexure only in the longitudinal direction. This gives rise to an integral equation

that can only be solved in an approximate manner. The approximate solution to this problem was first given by Biot (1937) and

this is referred to as Biot’s problem. Subsequent studies proceeded to improve the method of solution of the governing integral

equation, including those by Rvachev (1956a, 1956b, 1958, 1959) and Lekerkerker (1960) who developed techniques for the

approximate solution of the governing integral equation. Rakov (1962) and Medovnik, Rakov, and Kh (1970) extended the method

by Rvachev (1956b, 1958) to study a three-dimensional array of beams and Protsenko and Sinekop (1973) adopted a variation of

Rvachev’s method where the displacement across the width of the beam is assumed to be constant with an unknown variation

along the longitudinal direction. The arbitrary constant in the deflected shape is evaluated by considering the equilibrium at

a cross section along the longitudinal direction. A complete three-dimensional formulation of an infinite strip resting on an

isotropic elastic halfspace is given by Protsenko and Rvachev (1976) and accounts for both the longitudinal and transverse flexure

of the beam. In such a treatment the Bernoulli–Euler beam is essentially replaced by a Germain–Poisson–Kirchhoff thin plate.

Biot’s problem also provided a procedure for relating the spring constant of the Winkler model to the elastic constants and other

flexural and geometric properties of the beam-elastic halfspace system. Of related interest are the studies related to the line-

contact problem investigated by Kalker (1972), Sivashinsky (1975), Panek and Kalker (1977) and Tuck and Mei (1983) that examine

the narrow rigid die (pizza-cutter) problem, where the contact stresses in the transverse direction approach the problem of the

two-dimensional indenter (Sadowsky, 1928) as the length of the indenter increases. Biot’s result for the spring constant is derived

by matching the maximum flexural moment between the beam with Winkler support with the analogous result for the beam on

an elastic halfspace. This gives

ks ≈ 1.23 μ

(1 − ν)Cb

(
2μb4

C(1 − ν)EI

)0.11

where μ and ν are the shear modulus and Poisson’s ratio of the elastic halfspace, EI is the flexural rigidity of the beam, b is the half

width of the beam and the constant C ∈ (1, 1.13). Expressions similar to the above were also developed by Vesić (1961a, 1961b)

and Barden (1963) by comparing both numerical and experimental results and these are summarized by Selvadurai (1979). An

alternative perspective of the interpretation of the Winkler constant was provided by Gibson (1967) who examined the axial

surface deformations of an incompressible nonhomogeneous elastic halfspace, where the linear elastic shear modulus varies

linearly with depth (i.e. G(z) = G0 + mz). In the particular instance when the shear modulus at the surface becomes zero, the

axial surface displacement is discontinuous and the Winkler constant k = 2m. Further accounts of developments in this area are

given by Selvadurai (1996a, 2007) and Selvadurai and Katebi (2013, 2015). It should be noted that in developments related to the

problem of a flexible beam and an elastic halfspace, the contact is assumed to be smooth and bilateral. This places a restriction

on the applicability of the developments to situations where localized loading of a flexible beam results in separation and the

extent of the zone of separation itself can be an unknown in the problem.

In this paper we first present a brief summary of Biot’s problem for an elastic halfspace and indicate a simple procedure that

can bound the result for the elasticity problem to take into consideration the influence of adhesive contact between the elastic

halfspace and the beam. The work is then extended to consider an infinite beam of finite width resting on a poroelastic halfspace.

In the case of the poroelasticity problem, in addition to the question of either smooth or adhesive contact at the beam-elastic

medium interface, pore pressure boundary conditions also need to be prescribed. These can range from a completely perme-

able to a completely impermeable beam-poroelastic medium interface. The paper presents mathematical approaches that yield

bounds for the flexural behavior of the infinite beam problem. These bounds are used to assess the accuracy of a computational

approach that can be used to examine the interaction of an infinite beam and a poroelastic halfspace.

2. Biot’s problem for an elastic halfspace

Prior to considering the problem of an infinite beam on a poroelastic halfspace, it is instructive to outline the basic formulation

of the associated elasticity problem. We consider the problem of an infinite beam of finite width resting in smooth contact with

the surface of an isotropic elastic halfspace (Fig. 1). The beam experiences flexure only in the longitudinal direction and the

flexural response of the beam is described by the Bernoulli–Euler classical beam theory. This is not a restriction on the method of

analysis and, with suitable modifications the analysis can be extended to thick beam theories that incorporate shear deformation

effects.

The flexural behavior of the beam is described by the differential equation

EI
d4wb

dx4
+

∫ b

−b

q(x, y) dy =
∫ b

−b

pe(x, y) dy (1)

The boundary conditions applicable to the problem depend on the contact conditions at the beam-elastic halfspace interface.

For convenience of presentation, the region of the surface of the halfspace in contact with the beam is denoted by �c (i.e. x ∈
(−∞,∞); y ∈ (−b, b); z = 0) and the combined region of the halfspace exterior to �c is denoted by �e (i.e. �e = �e1 ∪ �e2 and in

�e1, x ∈ (−∞, ∞); y ∈ (b, ∞); z = 0 and in �e2, x ∈ (−∞, ∞); y ∈ (−b, −∞); z = 0). Also we denote �c ∪ �e = � and �c ∩ �e = 0.

(i) For frictionless contact between the beam and the elastic halfspace, the following boundary conditions are applicable:

uz(x, y, 0) = wb(x, y); (x, y) ∈ �c (2)
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