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a b s t r a c t

In this paper, we present a technique for constructing an analytical solution to the axisym-
metric elasticity and thermoelasticity problems in terms of stresses for an inhomogeneous
layer, whose elastic and thermophysical properties vary arbitrarily within the thickness-
coordinate. By making use of the direct integration method, the equilibrium and
compatibility equations are reduced to the governing Volterra-type integral equations
accompanied with both integral and local boundary conditions for the key functions. To
solve the obtained governing equations, we employed the resolvent-kernel technique
which results in closed-form analytical expressions for the key functions. Having deter-
mined the key functions, the stress-tensor components are found through the relationship
established by the integration of equilibrium equations. The same solution procedure is
employed for solving the steady-state heat-conduction problem in an inhomogeneous
layer. Typical numerical examples are discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The elastic response of inhomogeneous solids to force and thermal impacts is one of the most discussed subjects in the
field of linear elasticity and thermoelasticity in recent decades. Under assumption that the elastic modulii can be functions of
the coordinates, the linear Hooke’s (or Duhamel’s, for the thermoelastic case) law is usually accepted as a basic model for
such a response on a macroscopic scale. Under this assumption, the governing equations for the relevant problems of elas-
ticity and thermoelasticity appear to possess variable coefficients and allow for acquisition of their explicit analytical solu-
tions in very limited cases of inhomogeneity (Tanigawa, 1995). Obviously, analysis of thermal and mechanical performance
of arbitrarily-inhomogeneous solids presents a challenge for both analytical and numerical modes of attack due to significant
mathematical complications and calls for a number of simplifying assumptions, which are usually accepted in the relevant
literature but are potentially insufficient.

From a historical prospective, the pioneering works were focused on one- and two-dimensional elasticity problems with
inhomogeneous materials as they were primarily concerned with problems of geophysics, such as the propagation of elastic
waves in seismic processes or stress distributions in soil due to the steady-state local pressure caused by building structures,
etc. For adequate analysis of these problems, it was important to account for the variation in soil properties with respect to
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depth. A number of approximate solutions for certain problems in elasticity theory for specific cases of inhomogeneity have
been developed, e.g., by Winkler (1867), Aichi (1922), Sezawa (1931), Wilson (1942), Ewing, Jardetzki, and Press (1957),
Gibson (1967), Kassir (1970), Awojobi and Gibson (1973), Muravskii (2001) and many others.

In the second half of the twentieth century, the advancement in technologies that implemented composite materials by
combining dissimilar constituents inspired a surge of interest in the analysis of inhomogeneous structures (see, e.g., Hashin,
1964; Olszak, 1959), which lead to the establishment of basic methods in this area. In the 1980s, new technologies for the
fabrication of functionally-graded materials (this term has been suggested in Japan during the space-exploration program,
see, e.g., Koizumi, 1997; Miyamoto, Niino, & Koizumi, 1997; Rabin & Shiota, 1995) were widely developed. The basic purpose
for employment of the functionally-graded materials was to create an intermediate layer between the contrasting materials
(e.g., metal and ceramics) in order to eliminate or control the residual stresses and thermal deformations (see Wetherhold,
Seelman, & Wang, 1996) caused by the mismatch of material properties. The exhaustive reviews on the subject of function-
ally-graded materials were published by Ilschner (1997), Rabin and Shiota (1995), Rödel and Neubrand (1997) and Birman
and Byrd (2007). The widespread interest in continuously inhomogeneous materials has developed a number of analytical
and numerical methods, some of which have become dominant in scientific literature.

One of these analytical methods is based on the construction of exact solutions to the elasticity and thermoelasticity
problems for the solids, whose material properties are assumed to be given by elementary functions (i.e., linear, power,
exponential, etc.) of one of the spatial coordinates. The number of papers devoted to the analysis of these particular cases
of inhomogeneity is quite large and grows rapidly, which makes it nearly impossible to present the extensive reviews of
the relevant references (see, e.g., Muravskii, 2001; Tokovyy & Ma, 2009; Wang, Tzeng, Pan, & Liao, 2003). The popularity
of this approach was provoked by the possibility of obtaining a closed-form analytical solution by means of the classical
methods of mathematical physics. On the other hand, the application of these solutions is limited due to the very specific
cases of inhomogeneity which can be attempted by this means.

An alternative approach is based on the representation of arbitrarily-inhomogeneous solids by assembling perfectly con-
nected homogeneous layers (Liew, Kitipornchai, Zhang, & Lim, 2003; Liu, Ke, Wang, Yang, & Alam, 2012; Zhang & Hasebe,
1999). This method is known as the discrete-layer approach (Ramirez, Heyliger, & Pan, 2006). Having solved the problem
for each homogeneous layer, the solutions then are tailored by making use of the interface conditions to obtain the solution
for entire solid satisfying the original boundary conditions on its surfaces. A weakness of this approach is that there are pos-
sible stress discontinuities at interfaces and weak convergence of the constructed solution with increment of the number of
layers (Watremetz, Baietto-Dubourg, & Lubrecht, 2007). To overcome these difficulties, a combination of two foregoing
approaches can be employed when the material properties of each sub-layer are assumed to be elementary functions (for
instance, linear Plevako, 2002 or exponential Guo & Noda, 2007 ones, etc.) so that they can be managed as continuous at
the interfaces.

A method for the solution of plane elasticity problems for inhomogeneous solids by means of the complex variable tech-
nique has been suggested by Mishiku and Teodosiu (1966). According to this approach, the original problems are reduced to
the conjugation problems, which, in turn, are solved by means of successive approximations.

There are a number of numerical (Meguid & Zhu, 1995; Reddy & Cheng, 2001; Tarn, Wang, & Wang, 1996) and analytic-
numerical (Kushnir, Popovych, & Harmatii, 2001; Kushnir, Popovych, & Vovk, 2008) methods for analysis of elastic behavior
of inhomogeneous solids.

An efficient approach to the analysis of elastic and thermoelastic response of arbitrarily-inhomogeneous solids is based
on the reduction of the original problems to solutions of integral equations. Theoretical background for this approach has
been substantiated by Lopatinskii (1953) and Fichera (1961). This method proved its efficiency for a number of one-
dimensional problems (Clements & Rogers, 1978; Furuhashi & Kataoka, 1967; Li, Peng, & Lee, 2010; Panferov & Leonova,
1975). Based on the method of direct integration (Tokovyy, 2014), Vihak (Vigak) and his followers (see Tokovyy,
Kalynyak, & Ma, 2014) systemized this approach by suggesting a clear algorithm, which allowed for the reduction of the
original problems to the Volterra-type integral equations of second kind with accompanying boundary and integral condi-
tions. This algorithm along with the application of the resolvent-kernel technique allowed for the construction of solutions to
the formulated problems in explicit analytical form, which can be used for numerical implementation as well as for further
analytical treatment (Tokovyy & Ma, 2013).

In this paper, we utilize the direct integration method for the case of axisymmetric elasticity and thermoelasticity prob-
lems in terms of stresses for an infinite layer, whose elastic modulii are arbitrary functions of the transversal coordinate. The
original equilibrium and compatibility equations are reduced to two governing equations for the key functions with
corresponding boundary conditions. By making use of the Hankel integral transformation, we separate the variables in
the obtained equations and then reduce them to the solution of Volterra’s integral equation of second kind. By solving
the latter equation with application of the resolvent-kernel, the key functions are determined and then the stress-tensor
components are constructed by means of the relations, obtained on the basis of the equilibrium equations. The same strategy
is employed for the solution of the axisymmetric heat-conduction problem in the considered domain.

2. Formulation of the problem

Consider an axisymmetric problem of elasticity and thermoelasticity for a layer 0 6 q <1; jzj 6 h, whose material prop-
erties, i.e., the Young’s modulus, E, the Poisson’s ratio, m, and the linear thermal expansion coefficient, a, are arbitrary func-
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