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a b s t r a c t

Herein we present a procedure by which a high-frequency asymptotic formula can be
derived for dispersion relations of Rayleigh waves that propagate in various directions
along the free surface of a vertically-inhomogeneous, prestressed, and generally anisotro-
pic half-space. The procedure is based on three assumptions, namely: (i) the incremental
elasticity tensor of the material half-space can be written as the sum of a homogeneous
isotropic part CIso and a depth-dependent perturbative part A; (ii) at the free surface both
the initial stress and A are small as compared with CIso; (iii) the mass density, the initial
stress, and A are smooth functions of depth from the free surface. We derive formulas
and Lyapunov-type equations that can iteratively deliver each term of an asymptotic
expansion of the surface impedance matrix, which leads to the aforementioned
high-frequency asymptotic formula for Rayleigh-wave dispersion. As illustration we
consider a thick-plate sample of AA 7075-T651 aluminum alloy, which has one face treated
by low plasticity burnishing that induced a (depth-dependent) prestress at and
immediately beneath the treated surface. We model the sample as a prestressed,
weakly-textured orthorhombic aggregate of cubic crystallites and work out explicitly, up
to the third order, the dispersion relations that pertain to Rayleigh waves propagating in
several directions along the treated face of the sample.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently Man, Nakamura, Tanuma, and Wang (2015) developed a general procedure, under the framework of linear elas-
ticity with initial stress (Biot, 1965; Hoger, 1986; Man & Carlson, 1994; Man & Lu, 1987), for obtaining a high-frequency
asymptotic formula for the dispersion of Rayleigh waves propagating in a vertically-inhomogeneous, prestressed and aniso-
tropic medium. That work was meant to serve as the mathematical foundation for a nondestructive measurement technique
to monitor the retention of protective surface and subsurface compressive stresses which are put in metal parts (e.g., critical
components of aircraft engines) by surface treatments for fatigue-life enhancement. The theory in Man et al. (2015) does not
consider the effects of surface roughness on Rayleigh-wave dispersion; it covers only surface treatments (e.g., low plasticity
burnishing (LPB), which leaves a mirror-smooth surface finish) where such effects can be ignored. On the other hand, that
theory is developed with the constitutive equation in linear elasticity with initial stress put in its most general form, which
makes derivation of explicit dispersion relations difficult.
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Here we adapt the general procedure in Man et al. (2015) to the case where the incremental elasticity tensor L can be
written as the sum of an isotropic part CIso and a perturbative part A. Under a Cartesian coordinate system where the mate-

rial medium occupies the half-space x3 6 0, the perturbative part Að�Þ, the initial stress T
�
ð�Þ, and the mass density qð�Þ are

assumed to be smooth functions of x3. Moreover, at the free surface x3 ¼ 0 of the material medium Að0Þ and T
�
ð0Þ are

assumed to be sufficiently small as compared with CIso that, for all expressions and formulas which depend on Að0Þ and

T
�
ð0Þ, it suffices to keep only those terms linear in the components of these tensors. Under this setting, after outlining some

preliminaries in Section 2, we derive in Sections 3–5 specific formulas with which the procedure presented in Man et al.
(2015) can be implemented to solve the direct problem of deriving high-frequency asymptotic formulas for dispersion rela-
tions that pertain to Rayleigh waves with various propagation directions. Once dispersion curves can be generated when req-
uisite data on material and stress are given, the inverse problem of inferring stress retention from Rayleigh-wave dispersion
can be attacked by an iterative approach in further studies.

In Section 6, we present an illustrative example where we derive Rayleigh-wave dispersion relations for a thick-plate
sample of an AA 7075-T651 aluminum alloy that carries a prestress induced by prior LPB-treatment. The sample is modeled
as a weakly-textured orthorhombic aggregate of cubic crystallites. The prestress in the sample was ascertained by destruc-
tive means (X-ray diffraction and hole-drilling), and so were the relevant texture coefficients (X-ray diffraction). To shed
light on how crystallographic texture would affect the dispersion relations, we prescribe two other textures to the sample
and repeat the calculations with the prestress and material parameters unchanged.

2. Preliminaries

In a Cartesian coordinate system let ðx1; x2; x3Þ be the Cartesian coordinates of place x, and let u ¼ uðxÞ ¼ ðu1;u2;u3Þ be the
displacement at x pertaining to the superimposed small elastic motion. We work in the theoretical context of linear elasticity
with initial stress, under which the constitutive equation can be put in the form (cf. Man & Carlson (1994), Man & Lu (1987))

S ¼ T
�
þH T

�
þL½E�; ð1Þ

here S ¼ Sij
� �

is the first Piola–Kirchhoff stress, T
�
¼ ðT

�
ijÞ the initial stress, H ¼ @ui=@xj

� �
the displacement gradient pertaining

to the superimposed small elastic motion, and E ¼ ðH þHTÞ=2 the corresponding infinitesimal strain, where the superscript T
denotes transposition; L is the incremental elasticity tensor which, when regarded as a fourth-order tensor on symmetric
tensors, has its components Lijkl ði; j; k; l ¼ 1;2;3Þ satisfying the major and minor symmetries.

We choose the Cartesian coordinate system so that the material half-space occupies the region x3 6 0 whereas the 1- and

2-axes are chosen arbitrarily. In this paper we assume that the initial stress T
�
¼ T
�
ðx3Þ, the incremental elasticity tensor

L ¼ Lðx3Þ, and the mass density q ¼ qðx3Þ are smooth functions of the coordinate x3 ðx3 6 0Þ. Here and hereafter we use
the term ‘‘smooth function’’ to denote an infinitely differentiable function all of whose derivatives are bounded and contin-

uous. We assume that the initial stress T
�

satisfies the equation of equilibrium div T
�
¼ 0, and that the surface x3 ¼ 0 of the

half-space is free of traction, which implies that the components T
�

i3ðx3Þ ði ¼ 1;2;3Þ of T
�

vanish at the surface x3 ¼ 0. We call
�x3 P 0 the depth of place x beneath the free surface x3 ¼ 0.

In what follows we suppose that L can be written as a sum of two terms: a principal part CIso which is homogeneous and
isotropic, and a perturbative part A ¼ Aðx3Þwhich is a smooth function of x3 ðx3 6 0Þ and is generally anisotropic. Then L can
be expressed as a fourth-order tensor on symmetric tensors E in the form

L½E� ¼ CIso½E� þA½E� ¼ kðtrEÞIþ 2lE þA½E�; ð2Þ

where I is the identity matrix, k and l are the Lamé constants that pertain to CIso, and A can be written under the Voigt nota-
tion as a 6� 6 symmetric matrix arsðx3Þð Þ with its components ars being smooth functions of x3 ðx3 6 0Þ. In the present study
we adopt the following basic assumption:

(⁄) At the free surface x3 ¼ 0, the perturbative part A of L and the initial stress T
�

are sufficiently small as compared with

the isotropic part CIso of L (i.e., kT
�
ð0Þk � kCIsok; kAð0Þk � kCIsok, where k � k denotes the Euclidean norm) that for all

expressions and formulas which depend on Að0Þ and T
�
ð0Þ it suffices to keep only those terms linear in the components

of these tensors.

Throughout this paper, we do not put any condition on the x3-derivatives of Aðx3Þ and of T
�
ðx3Þ at x3 ¼ 0.

Substituting the componentwise expression of (1) into the equations of motion with zero body force, we obtain elastic
wave equations of the form

q
@2

@t2 ui ¼
X3

j;k;l¼1

@

@xj
Bijkl

@uk

@xl

� �
; i ¼ 1;2;3; ð3Þ
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