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a b s t r a c t

We investigate theoretically isothermal, incompressible, creeping Newtonian flows past a
sphere, under the assumption that the shear viscosity is pressure-dependent, varying
either linearly or exponentially with pressure. In particular, we consider the three-dimen-
sional flow past a freely rotating neutrally buoyant sphere subject to shear at infinity and
the axisymmetric flow past a sedimenting sphere. The method of solution is a regular per-
turbation scheme with the small parameter being the dimensionless coefficient which
appears in the expressions for the shear viscosity. Asymptotic solutions for the pressure
and the velocity field are found only for the simple shear case, while no analytical solutions
could be found for the sedimentation problem. For the former flow, calculation of the
streamlines around the sphere reveals that the fore-and-aft symmetry of the streamlines
which is observed in the constant viscosity case breaks down. Even more importantly,
the region of the closed streamlines around the sphere is absent. Last, it is revealed
that the angular velocity of the sphere is not affected by the dependence of the viscosity
on the pressure.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In most isothermal flows of Newtonian liquids, the shear viscosity is commonly assumed to be constant. However, the
viscosity of typical liquids begins to increase substantially with pressure when pressures of the order of 1000 atm are
reached (Denn, 2008; Rajagopal, Saccomandi, & Vergori, 2012; Renardy, 2003). In certain applications, the effect of the pres-
sure on the viscosity is much larger than that on the mass density, so that compressibility may be neglected but the viscosity
pressure dependence needs to be accounted for (Denn, 2008; Goubert, Vermant, Moldenaers, Göttfert, & Ernst, 2001). Hence,
the assumption of constant viscosity is valid only at low processing pressures and may introduce error when modeling flows
involving high pressures or a large pressure range, e.g. in polymer and food processing, pharmaceutical tablet manufacturing,
crude oil and fuel oil pumping, fluid film lubrication, microfluidics, and geophysics (Dealy & Wang, 2013; Le Roux, 2009;
Martinez-Boza, Martin-Alfonso, Callegos, & Fernández, 2011; Rajagopal et al., 2012). Due to the growing interest in applica-
tions of high pressure chemical and process technologies across a range of engineering fields, flows of fluids with pressure-
dependent viscosity as well as techniques for measuring the pressure dependence of the viscosity and the viscosity at high
pressure have received increased attention recently (Goubert et al., 2001; Park, Lim, Laun, & Dealy, 2008; Schaschke, 2010).
The pressure dependence of viscosity, however, is not only of industrial but also of great fundamental importance.

http://dx.doi.org/10.1016/j.ijengsci.2014.09.004
0020-7225/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

International Journal of Engineering Science 86 (2015) 1–9

Contents lists available at ScienceDirect

International Journal of Engineering Science

journal homepage: www.elsevier .com/locate / i jengsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijengsci.2014.09.004&domain=pdf
http://dx.doi.org/10.1016/j.ijengsci.2014.09.004
http://dx.doi.org/10.1016/j.ijengsci.2014.09.004
http://www.sciencedirect.com/science/journal/00207225
http://www.elsevier.com/locate/ijengsci


Málek and Rajagopal (2007) reviewed different empirical equations proposed in the literature in order to describe experimen-
tal observations on the pressure-dependence of the viscosity. Barus (1893) proposed the following formula for the viscosity, g⁄:

g� ¼ g�0 exp d� p� � p�0
� �� �

ð1Þ

where d⁄ is the pressure-dependence coefficient, assumed to be constant, and g�0 is the viscosity at the reference pressure p�0.
It should be noted that throughout the text a superscript ⁄ denotes a dimensional quantity. Barus (1891) employed the fol-
lowing linear expression:

g� ¼ g�0 1þ d� p� � p�0
� �� �

ð2Þ

which is equivalent to Eq. (1) for small values of d⁄ and/or small pressure differences. As noted by Schaschke (2010), simple
models like the above may be used only for simple and small molecules and not for long chain molecules, such as polymers
and oil mixtures. Other formulae proposed in the literature, which better fit experimental results for complex fluids, can be
found in Málek and Rajagopal (2007).

The pressure-dependence of the viscosity in lubrication (Szeri, 1998), viscometric and other flows has been analyzed
mathematically by various investigators (Hron, Málek, & Rajagopal, 2001; Lanzendörfer & Stebel, 2011; Málek &
Rajagopal, 2007; Marušić & Pažanin, 2013; Renardy, 2003). Hron et al. (2001) studied various unidirectional and two-dimen-
sional flows of simple fluids with pressure-dependent viscosities and showed that unidirectional flows corresponding to
Couette or Poiseuille flow are possible only in special forms of the viscosity. Kalogirou, Poyiadji, and Georgiou (2011) com-
piled analytical solutions for internal, Poiseuille-type, steady flows. More specifically, these authors studied the unidirec-
tional plane, axisymmetric and annular Poiseuille flows of a Newtonian liquid assuming that the viscosity obeys Eq. (2).
Pruša, Srinivasan, and Rajagopal (2012) have recently investigated the role of pressure-dependent viscosity in measurements
with falling cylinder viscometers and showed that the error introduced by the application of the classical constant-viscosity
formula can be significant for some fluids. They also proposed a heuristic correction to that formula.

So far, however, investigation of external flows with pressure-dependent viscosity are almost absent from the literature.
As far as we are aware, no analytical solutions exists, and only some limiting numerical results for the unbounded axisym-
metric flow past a sedimenting sphere in a power-law ambient fluid have been presented by Chung and Vaidya (2010).
Although in external inertialess flows, one does not expect very large variations of the pressure due to flow, the non-linearity
of the governing equations may be adequate to predict unexpected and new flow phenomena.

Of particular interest to the present work is the flow around a sphere, i.e. the simplest flow relevant to falling body type
viscometry. More specifically, we have chosen to study the influence of a pressure-dependent shear viscosity on the steady,
creeping, incompressible flow of a Newtonian liquid of mass density q�f past a rigid sphere of radius R⁄ and mass density q�s .
Two different cases are investigated. In the first case, the mass densities of the fluid and the sphere are assumed to be equal,
i.e. the sphere is neutrally buoyant, and shear is applied far from the sphere. In the second case, q�s > q�f but no shear is
applied, and thus the sphere sediments with a constant terminal velocity.

For a neutrally buoyant sphere under the influence of simple shear flow imposed far from the sphere, it is known that
non-linear effects, such as inertia or viscoelasticity, break the fore-and-aft symmetric configuration of the streamlines
around the sphere, in the plane which shear is applied. Indeed, Lin, Peery, and Schowalter (1970) and Subramanian and
Koch (2007), among others, have shown that the inclusion of the inertia terms into the governing equations destroys the
symmetry of the orbits of the fluid elements around the sphere. This may have important consequences for the heat transfer
around the spherical particle, as well for the bulk properties of suspensions of particulates (Subramanian & Koch, 2007).
D’Avino et al. (2008) and Housiadas and Tanner (2011) considered the case where the matrix fluid is a viscoelastic fluid
and showed that the fore-and-aft symmetry of the streamlines also then breaks down. In the present work, it is shown that
an alternative cause of the destruction of the streamline symmetry around a spherical particle is the non-linearity intro-
duced by the pressure dependence of the viscosity of the matrix fluid.

Recently, is has been demonstrated that for internal, fully developed, laminar flows in straight channels and circular tubes
the perturbation solution up to fourth order in d (for the definition of the dimensionless coefficient d see the subsequent sec-
tion) is an excellent approximation of the full, analytical solution (Poyiadji, Housiadas, Kaouri, & Georgiou, 2015). For the
problems under consideration, and for typical flow conditions, the dimensionless pressure-viscosity coefficient is a small
number, i.e. d� 1. Since the full, non-linear, governing equations cannot be solved analytically, we employed a regular per-
turbation scheme with the small number being the d coefficient.

The rest of the paper is organized as follows. In Section 2, the assumptions, governing equations and boundary conditions
are presented in dimensionless form. In Section 3, the solution procedure and the analytical solution up to first order is pre-
sented for the simple shear case. In the same section, the streamlines around the sphere are calculated and discussed. The
main conclusions are summarized in Section 4. Finally, in Appendix A, it is shown that no analytical solution can be found
with the proposed method for the two-dimensional flow past a sedimenting sphere.

2. Problem definition

The steady, creeping, isothermal flow around a sphere is considered. The ambient fluid is assumed to be Newtonian with
constant mass density q�f , and a variable shear viscosity g⁄, given by either one of Eqs. (1) and (2). A fixed spherical
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