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a b s t r a c t

There are some standard procedures in Mechanics that lead to a final equation that pre-
sents an apparent objectivity unbalancing. Generally, this apparent unbalancing has its ori-
gin on the material time derivative of an objective quantity. In the present work we analyze
three examples: the material time derivative of a scalar-valued function of a second order
tensor, the relaxation of a simple viscoelastic material and the Cattaneo equation for the
heat flux where this situation occurs. We show that, decoupling the material time deriva-
tive of the tensor into a part that is associated to the time derivative of its eigenvalues and
another part that is associated to the time derivative of its eigenvectors, only the first part
is significant. This conclusion can bring insights for different forms of constitutive assump-
tions and interpretation of general results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the Mechanics literature there are some situations where standard procedures renders to a resulting equation a struc-
ture that needs to be further clarified since, apparently, objectivity is not balanced. This does not mean that the original
equation is incorrect, but means that an operation which extracts the objectivity structure of the equation, eliminating a
non-objective term that is innocuous can be employed. This further step towards writing the equation with objective quan-
tities only can bring some insights to help future work.

1.1. The time derivative of an isotropic scalar-valued function of a symmetric tensor

The time derivative of an isotropic scalar-valued function, a, of a symmetric tensor, A, is frequently used in Mechanics and
other fields. As standard examples, we can cite the dependence of the Helmholtz free energy, on the elastic Left Cauchy–Green
strain tensor, when the material is undergoing an isothermal process, or the dependence of the Gibbs potential on the
symmetric stress tensor, when thermal effects are significant (see Rajagopal & Srinivasa, 2013). If we require the dependence
form of â Að Þ to be isotropic, we have that

â Að Þ ¼ â QAQ T
� �

; Q 2 O; ð1Þ
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where O is the orthogonal group and the superscript T indicates the transpose operation. It can be shown that the isotropic
nature of the function makes the form of â Að Þ to be dependent on the invariants of A solely, i.e.

â Að Þ ¼ ~a I1; I2; I3ð Þ � �a �I1;�I2;�I3
� �

; ð2Þ

where I1 � trA; I2 � 1
2 I2

1 � trA2
� �

; I3 � det A; �Ii � trAi. Hence, the derivative of an isotropic scalar-valued function of a sec-
ond order tensor with respect to this tensor is given by

dâ
dA
¼ @~a

@I1
þ I1

@~a
@I2

� �
1� @~a

@I2
AT þ I3

@~a
@I3

A�T ¼
X3

i¼k

k
@�a
@�Ik

Ak�1
� �T

; ð3Þ

where 1 is the identity tensor, the superscript �T indicates the inverse of the transpose of a tensor, and A0 � 1. Let us con-
sider the case where A is an objective symmetric tensor. The usual procedure to take the material time derivative of the sca-
lar a is to use the chain rule to obtain

_a ¼ dâ
dA
� _A; ð4Þ

i.e. the inner product between dâ
dA and the material time derivative of A. The quantity dâ

dA is given by one of the two expressions
of Eq. (3). This result is pretty standard and can be found frequently in text books (e.g. Truesdell & Noll, 2004). Here we can
highlight the point we raise in this short article. When we look to the left side of Eq. (4) we see the material time derivative of
an objective scalar, which is objective. However, when we look to the right hand side of Eq. (4) we see the inner product of
two tensors: dâ

dA, which is objective, and _A which is non-objective. Hence, the logic behind Eq. (4) can undergo one more step.
Examining Eq. (4) one finds that adding a tensor of the form AX�XA, where X is an appropriate skew-symmetric tensor,

objectivity balance can be restored. This happens because tensor A
}
¼ _Aþ AX�XA can be objective and the added term is

orthogonal to dâ
dA. However, we must observe that since X is unrelated to A the resulting tensor A

}
is not a part of _A. In other

words, one cannot guarantee that A
}
����
���� 6 _A

��� ���, where Tk k is the norm of a generic tensor T. In this sense, the resulting objec-

tive balance achieved by the addition of AX�XA does not clarifies the point raised. What we need to identify is how we can

extract from _A the part that is orthogonal to dâ
dA. Therefore, we must guarantee that the resulting objective tensor has a norm

which is lower than the norm of tensor _A.

1.2. The relaxation process of a polymeric solution

Let us consider simple constitutive equations for polymeric solutions. Probably, the simplest 3-D constitutive equation
that can predict relaxation of a viscoelastic liquid is given by a generalization of the 1-D model proposed by Maxwell. This
equation takes the following form

rþ kr r
O

¼ 2gD; ð5Þ

where r is the stress, kr is the relaxation time, g is the viscosity, D is the symmetric part of the velocity gradient and the
down triangle indicates an objective time derivative of the tensor. The mostly used Maxwell model is the so called Upper
Convected Maxwell model, where the down triangle implies the contravariant convected time derivative operator, defined
by

r
O

� _r� Lr� rLT ; ð6Þ

where L is the velocity gradient. Since the material is viscoelastic, a stress relaxation process takes place when the material
experiences a flow cessation, the stress does not vanish immediately. The stress gradually relaxes to a stress-free state. In the
flow cessation process (see Bird, Armstrong, & Hassager, 1987), L and D become zero in Eqs. (5) and (6). Hence, Eq. (5)
becomes

rþ kr _r ¼ 0: ð7Þ

The stress relaxation process after the flow is stopped leads to another equation where objectivity is not balanced. The
stress, is supposed to be proportional to a non-objective tensor, the stress material time derivative.

1.3. The Cattaneo equation

The Cattaneo equation (see Cattaneo, 1948) is an equation for the heat flux which is based on a correction of the Fourier
equation. It is known that the celebrated Fourier equation for the heat flux is an approximation for the case of low frequen-
cies scales and that it leads to a parabolic equation for the temperature evolution. Since it is unreasonable to expect the every
disturbance is immediately felt by the whole domain, the evolution of temperature should be hyperbolic. If we consider the
particular case where there is no radiation or energy sources and the material considered cannot store energy (no elasticity),
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