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A B S T R A C T

The purpose of this study was to examine the dependence of image texture features on MR acquisition para-
meters and reconstruction using a digital MR imaging phantom. MR signal was simulated in a parallel imaging
radiofrequency coil setting as well as a single element volume coil setting, with varying levels of acquisition
noise, three acceleration factors, and four image reconstruction algorithms. Twenty-six texture features were
measured on the simulated images, ground truth images, and clinical brain images. Subtle algorithm-dependent
errors were observed on reconstructed phantom images, even in the absence of added noise. Sources of image
error include Gibbs ringing at image edge gradients (tissue interfaces) and well-known artifacts due to high
acceleration; two of the iterative reconstruction algorithms studied were able to mitigate these image errors. The
difference of the texture features from ground truth, and their variance over reconstruction algorithm and
parallel imaging acceleration factor, were compared to the clinical “effect size”, i.e., the feature difference
between high- and low-grade tumors on T1- and T2-weighted brain MR images of twenty glioma patients. The
measured feature error (difference from ground truth) was small for some features, but substantial for others.
The feature variance due to reconstruction algorithm and acceleration factor were generally smaller than the
clinical effect size. Certain texture features may be preserved by MR imaging, but adequate precautions need to
be taken regarding their validity and reliability. We present a general simulation framework for assessing the
robustness and accuracy of radiomic textural features under various MR acquisition/reconstruction scenarios.

1. Introduction

Radiomics, which regards images as data rather than pictures [1],
involves, in part, the exploitation of information that cannot necessarily
be discerned on an image, or set of images, by even an expert observer.
These data are designed to be mined from standard radiologic images;
thus, a shared multi-institutional database can lead to a large subject
pool from which image-based predictive models of patient outcome can
be built. Texture features are an important subset of the quantitative
image characteristics that can be extracted, in addition to first-order
intensity histogram statistics, shape-based features, and higher order
statistical methods such as fractal and wavelet analysis. As a radiomics
tool, texture analysis (TA) is increasingly being applied to diverse
imaging modalities to provide anatomical segmentation, cancerous le-
sion delineation, and prediction of response of normal and pathologic
tissue to radiation therapy [2–6]. TA of magnetic resonance (MR)
images has been applied to diverse clinical sites in the context of ra-
diation treatment (RT), for example: brain [7,8], head and neck [9,10],
breast [11], kidney [12], bladder [13], prostate [14–17], and

extremities [18]. The results of those studies, as well as those of on-
going clinical research, indicate great potential for the incorporation of
information gleaned from quantitative texture features into initial RT
planning as well as adaptive RT of cancer patients.

Successful translation of quantitative imaging research into the
clinic will depend in part on the ability to reliably repeat (e.g., multiple
scans on the same subject) and reproduce (e.g., on various MR scan-
ners) extracted texture features from MR images [19]. As noted by
Mayerhoefer et al. [20], an impediment to widespread clinical appli-
cation of MR-based TA is its sensitivity to the choice of MRI scanner and
imaging protocol; several studies [14,20–24] have investigated the
dependence of TA on MRI field strength, scanner manufacturer, and
MRI acquisition parameters in both living subjects and phantoms.
While evaluation of repeatability and reproducibility of texture features
measured by MRI are very important, in this paper we endeavor to
address the issue of accuracy as well. There have been, to our knowl-
edge, no attempts at TA validation by direct comparison of measured
TA features to known ground truth texture of the object of interest. In
the absence of absolute knowledge of the texture features of an object,
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only relative comparisons can be made between MRI-derived features
extracted using various imaging protocols or multiple MR scanners.
Moreover, if two MR imaging methodologies produce different texture
features, then in the absence of a ground truth, one cannot determine
which method is more accurate.

Our overall goal is to overcome the deficiencies of the aforemen-
tioned relative TA comparisons by creation of a ground truth digital
MRI phantom. By utilizing the digital phantom as input to an appro-
priate MR image simulator, we are able to create images inside a wide
universe of MR imaging scenarios, and establish the dependence of the
absolute accuracy of extracted TA features on MR field strength, MR
pulse sequence, arrangement of receive coils, presence of image arti-
facts, and choice of image reconstruction algorithm. The purpose of this
paper is: i) to lay the basic methodological framework for determina-
tion of absolute texture feature dependencies, using a two-dimensional
digital ground truth phantom as input to an MR simulator; ii) to eval-
uate the sensitivity of texture feature accuracy and variance to noise
level, acceleration factor and image reconstruction algorithms; and, iii)
to compare the magnitude of texture feature error and variance due to
acquisition details and/or reconstruction algorithm choice to the
magnitude of clinically relevant texture features differences (high
versus low grade glioma) in clinical brain MR images.

2. Methods

2.1. Study design

Texture features were examined in i) simulated MRI datasets, based
on a digital phantom of the brain, and ii) clinical brain MR images of
glioma patients. For the first part of the study, an idealized 2D digital
phantom of an axial slice of human brain, developed by Guerquin-Kern
et al. [25] served as a ground truth. We employed an MRI simulator
[26], developed by the same group that created the idealized brain
phantom, that produces complex k-space data from the digital
phantom. This simulator is open-source software consisting of code
written in Matlab (Mathworks, Natick, MA) for performing MRI simu-
lation and reconstruction. We utilized the script ‘DemoSimuAn-
dRecon.m’, which defines a parallel MRI experiment setting and Car-
tesian k-space sampling. Several sets of noise were added and the MR
image was reconstructed using the following algorithms, appropriate
for parallel imaging with phased-array coils, which are included in the
open source MRI simulator software: conjugate gradient (CG), total
variation (TV), and wavelet regularization (WL). A fourth algorithm,
conventional inverse Fast Fourier Transform (iFFT), appropriate for
non-accelerated (non-parallel) imaging, was also implemented by
straightforward modification of the Matlab code. The clinical image
data consisted of T1- and T2-weighted MRI scans from glioma patients,
included in the BRATS 2015 challenges (Multimodal Brain Tumor
Segmentation) [27]. Regions of interest (ROIs) were selected both on
simulated and clinical data and texture features were extracted. Abso-
lute feature error and variance among the reconstruction algorithms,
using images with similar signal-to-noise ratio to the clinical brain
images, were then compared to the magnitude and clinically relevant
tumor feature differences (high versus low grade) in the clinical brain
images.

2.2. Simulated data

2.2.1. MR signal simulation
MRI simulation was considered in two dimensions. The in-plane

excited spins were modeled as radio-frequency emitters featuring po-
sition-dependent precession frequency and phase. The signal km ( )i l

received by a coil of sensitivity rS ( )i for a given frequency location kl in
k space is the Fourier transform of the coil sensitivity-modulated object
function rρ ( ):

∫= −k r r em S ρ dr( ) ( ) ( ) .k r
i l R i

jπ2 ·l
2 (1)

For an array of receiving coils the measurement m is formed by
concatenating signals received from each individual coil. The signal mi
can be calculated analytically in the MRI simulator because the object
ρ r( ) is comprised of regions (i.e., connected and bounded sets) of
constant intensity; the k-space signal mi is obtained by summing the
signal over all regions [25,26]. Alternatively, the simulator can utilize
the traditional procedure of sampling the analytical object with a grid
of a given size, then resampling the inverse Fourier transform of this
discrete image according to the desired k-space matrix size, a so-called
“rasterized” simulation. Sampling the object with infinite resolution
will theoretically give equivalent results to direct calculation using the
regions defined by the analytical object. We chose the rasterized si-
mulation for its great reduction in computation time, at the sacrifice of
some (negligibly small) accuracy due to finite object sampling grid
sizes, as detailed previously [25]. To investigate the influence of sam-
pling grid size, we recorded the signal-to-error ratio of reconstructed
images as a function of grid size. Based on this investigation, described
in the Results section, a grid refinement factor of 5 was chosen for all
subsequent k-space generation.

The noise-free measurement m can be expressed as

=m Eρ, (2)

where E denotes the MRI system matrix and ρ is the object. When
taking into account the presence of noise along with other un-
certainties, a more realistic object estimation model to consider is as
follows:

= +m Eρ n (3)

where n represents the noise perturbation. This formulates the MRI
reconstructions as an inverse problem that attempts to recover the
object from the corrupted measurement m.

Shown in Fig. 1a is a 256×256 rasterization of the object ρ r( ), a
brain slice, that was adopted as the ground truth image. The pertur-
bation signal was modeled as a centered multivariate complex Gaussian
process, resulting in realistic MR image noise [28]. The MR signal was
modeled under the following scenarios: a parallel imaging (phased
array) coil consisting of eight circular RF coils of radius 7 cm placed
equiangular and equidistant at 17 cm from the isocenter, and a single
conventional birdcage coil of 17 cm radius. All utilized a FOV=28 cm,
and 256× 256 acquisition matrix, and the parallel coil used accelera-
tion factor of one, two or four.

2.2.2. MRI reconstruction
Three iterative image reconstruction methods, based respectively on

conjugate gradient (CG) [29], total variation (TV) [30], and wavelet
(WL) regularization [31], were considered. These three were chosen not
only because of their ready accessibility as part of the MRI simulator
package, but also because they have been thoroughly evaluated in-
cluding quantification of reconstruction error in several phantoms as
well as the brain phantom used in this work [25]. We utilized the de-
fault reconstruction algorithm parameters that were used in those
evaluations. In addition, we implemented a conventional inverse fast
Fourier transform (iFFT) method as a fourth, non-iterative reconstruc-
tion algorithm for comparison.

The conjugate gradient method pursues the reconstruction solution
∼x by solving the following minimization problem,

= ∥ − ∥ + ∥ ∥∼x Ex m xλarg min ( )x l l
2 2
2 2 (4)

where ∥ ∥· l2 denotes the l2 norm. Its cost function is a trade-off between
the fidelity term, which enforces consistency of the solutions with the
measurements, and a regularization term, which penalizes non-regular
solutions. The parameter λ is a positive constant that balances the in-
fluence of the two terms. The total variation method favors particularly
for piecewise-constant reconstructions and formulates the solutions as
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