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A B S T R A C T

Purpose: Noticing the fast growing translation of artificial intelligence (AI) technologies to medical image
analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges
are addressed when implementing big data concepts with high-throughput image data processing like radiomics
and machine learning in a radiooncology environment to support clinical decisions.
Methods: Based on the experience of our interdisciplinary radiomics working group, techniques for processing
minable data, extracting radiomics features and associating this information with clinical, physical and biolo-
gical data for the development of prediction models are described. A special emphasis was placed on the po-
tential clinical significance of such an approach.
Results: Clinical studies demonstrate the role of radiomics analysis as an additional independent source of in-
formation with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment
response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, ge-
netic and dosimetric data (‘panomics’) challenges the medical physicist as member of the radiooncology team.
Conclusions: The new field of big data processing in radiooncology offers opportunities to support clinical de-
cisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response
both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image
guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To
cope with this challenge national and international organizations for medical physics should organize more
training opportunities in artificial intelligence technologies in radiooncology.

1. Introduction

Evolution of radiooncology towards an individualized patient
treatment approach benefitted strongly from the increasing im-
plementation of imaging technology in the radiotherapy process. From
the beginning, medical physicists initiated and significantly contributed
to this development. Aiming to integrate patient imaging in all phases
of radiotherapy, medical physicists took over responsibilities in brid-
ging over informatics and computer science with radiooncology. In this
role, medical physicists were challenged to look more and more beyond
the borders of their domains in dosimetry, treatment planning and
delivery, quality assurance and radiation protection. In the attempt to

optimize the treatment for each individual patient, yet long before the
flag of personalized medicine was raised, medical physicists contributed
most significantly by incorporating individual patient image data into
the treatment process. Two major breakthroughs in this development
can be identified so far: (i) CT-based treatment planning and (ii) image
guided radiation therapy (IGRT) [1].

Following the adjustment of anatomical cross sections from stan-
dard atlases, shortly after the invention of computer tomography (CT)
with its revolutionary role in radiology, the first step in the in-
dividualization of radiotherapy was the introduction of CT-based
treatment planning [2]. Meanwhile, CT-based treatment planning has
expanded towards multimodality-based treatment planning by
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integrating other imaging modalities, such as Magnetic Resonance
Imaging (MRI) and/or Positron Emission Tomography (PET), aiming to
further improve the definition of target volumes and critical organs [3].

Another breakthrough in the integration of imaging into the
radiotherapy process was the image control of the treatment delivery at
the treatment unit, known as IGRT [1]. From the beginning with the
verification of the patient set-up on the treatment couch with film, up to
the most recent technology of combined MR-linac systems, medical
physicists were increasingly driving the integration of imaging into
radiotherapy [4].

Now, we are facing a fascinating new field, so to say as the third
breakthrough, where however medical physicists are not widely en-
gaged yet, but certainly have to find their role in the future: quantita-
tive image analysis or in short “radiomics” [5,6]. Radiomics can be
considered a two-step process with (1) extraction of relevant static and
dynamic imaging features, and (2) incorporating these features into a
mathematical model to predict treatment outcome as discussed in the
following subsections [7]. Radiomics is designed to assist the radio-
oncologist in the decision on the individual treatment of a patient, and
to assess prediction and prognosis of the disease.

In institutions dealing with radiomics techniques, it is most im-
portant to establish an interdisciplinary team where medical physicists
interact closely with clinicians, computer scientists and biologists.
Applying quantitative image analysis combined with specific radio-
therapy data as an individual radiooncomics signature for each treated
patient requires fundamental knowledge of AI techniques, big data
processing, medical imaging analysis methods, and the clinical and
molecular biological basics relevant for performing radiomics and
radiogenomics studies.

Mainly from the medical physicists view, this review addresses four
questions: what radiomics is about, what are the methods used, what is
the impact expected for radiooncology, and what is the particular
challenge to medical physicists.

2. Radiomics in radiooncology – goals and workflow

Radiomics is a higher order data-driven concept, which initially has
been used in radiology to support the detection of abnormal findings in
the large sets of CT data. Due to modern computer technology in con-
junction with efficient data mining, it became possible to extract large
amounts of imaging features which associated with medical, biological
and physical information may be clinically relevant, for instance for
prediction of treatment outcome [8–10]. The previous mainly qualita-
tive interpretation of images is now complemented by quantitative
image analysis based on techniques of artificial intelligence (AI), in-
cluding ML techniques such as deep learning (DL).

Expanding the radiomics concept to include molecular biology data
(e.g. genomic, proteomic, metabolomic), also designated “radio-
genomics”, has broken new ground to generally characterize diseases,
identify genetic variations and to predict treatment response by eval-
uating multidimensional imaging feature signatures. Translation of
radiomics to radiooncology has been investigated with encouraging
results over the recent years. An interesting aspect has been emphasized
by authors from the QUANTEC group (Quantitative Analyses of Normal
Tissue Effects in the Clinic) expecting more valid predictors for clinical
outcome when combining traditional dose-volume quantities, en-
dogenous biological biomarkers and radiomics features [11–13]. As
proposed recently, an even more comprehensive collection of input
data for radiooncology information analysis may be considered [11,14].
Such a “pan-omics” or “radio-oncomics” concept may for instance in-
tegrate all diagnostic and treatment data, specifically treatment plan-
ning images, image based 3D-/4D dose distribution, treatment ver-
ification and image-guidance data.

To implement the radiomics concept in radiooncology, it is re-
commended to establish a special interdisciplinary working group,
which covers the related clinical, biological, physical, mathematical

and most importantly computer science skills. In order to assure an
effective interaction and critical evaluation of the results, all members
of such a group should at least have some fundamental knowledge on
each mutual field of expertise. A typical radiomics workflow in clinical
practice comprises the data acquisition, data processing and clinical
testing of radiomics signature (Fig. 1).

3. Radiomics concepts and methods

3.1. Image acquisition, reconstruction, segmentation

Different modalities (CT, MRI, PET) have been explored as a po-
tential basis for radiomics, where the choice of modality mostly hinges
on the region of interest. In lung as well as head and neck cancer for
example, CT (and PET) scans are considered standard of care, and most
studies in these areas therefore focus on these modalities [15,16]. In
gliomas on the other hand, MRI is dominantly used. A challenge in MR-
based radiomics remains that the typically obtained anatomic MR
images rely on visual interpretation of tissue contrast resulting from
experimental pulse sequence parameters, and do not directly measure
the underlying tissue properties. Recent advances in the field of quan-
titative MR imaging however have enabled to directly quantify prop-
erties like T1 and T2 relaxation times [17]. In addition, extending MR
imaging beyond pure visualization of anatomy has further benefitted
the field of radiomics. By visualizing key oncogenic features, such as
angiogenesis or hypoxia, MR sequences, like diffusion or perfusion
imaging, capture oncogenic processes and make them available for
radiomics. In parallel, post-processing techniques have matured to a
point where derived metrics, such as cerebral blood volume (from
perfusion imaging) and tensor indices (from diffusion imaging) can be
reliably assessed [18,19].

For most modalities and diseases, (semi-)automatic segmentation
algorithms have been developed to supersede the time-consuming and
often unreliable process of manual segmentation, as segmentation
quality is critical for the subsequent analyses. In many fields, challenges
have been designed to compare and benchmark these algorithms
against each other, such as the Liver Tumor Segmentation Challenge
(http://www.lits-challenge.com) or the Brain Tumor Segmentation
Challenge (http://braintumorsegmentation.org). Furthermore, such a
central evaluation of algorithms enables the synthesis of “meta-algo-
rithms”, which consider and weigh segmentation information from
multiple algorithms to synthesize a substantially improved final seg-
mentation. Such approaches may encompass simple strategies, such as
majority voting or more complex algorithms such as STAPLE
(Simultaneous truth and performance level estimation) [20,21].
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Fig. 1. Workflow of the radiomics concept in radiooncology.
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