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a b s t r a c t

The purpose of this paper is to use a weak setup to justify application of the finite element
method (FEM) to the equilibrium problem for a nonlinear model of a shallow shell clamped
along part of an edge constrained by a frictionless obstacle. A suitable energy space is
constructed and the generalized (weak) solutions are introduced. The obstacle condition
is represented by a linearized model, and convergence of approximate FEM solutions to
a weak solution is established. In particular, existence of a weak solution to the problem
is proved. The result essentially extends that obtained in the paper Lebedev and Neymark
(2006).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Linear approximations in elasticity have been used for materials under small deformation. While this suffices for many
purposes, non-small deformations require nonlinear approaches. The nonlinear mathematical theory of elasticity remains
largely open, and the convergence of approximated solutions cannot be insured in general. However the nonlinear theory
of shallow shells was thoroughly studied by Vorovich (1999), and convergence of the finite element method (FEM) is a
known result (Vorovich & Lebedev, 1993). In some applications we must include additional constraints for displacements;
this is the case for an obstacle whose contact area with the shell is unknown in advance. Owing to the practical importance
of this problem, it has begun to receive intensive study (Lebedev & Neymark, 2006; Haslinger & Lovíšek, 1982; Bielski &
Telega, 1998; Léger & Miara, 2011). The problem setup proceeds via Lagrange’s principle of minimum total potential energy
over the set of functions restricted by the condition of non-penetration of the obstacle.

FEM is a variational approach whose convergence is studied in this paper for the equilibrium problem describing a
shallow shell with an obstacle. The Ritz method is used to introduce approximate solutions. Although convergence of
approximate FEM solutions is well known for linear problems involving continuous and coercive bilinear forms Ciarlet
(1978), the problem of convergence for nonlinear energy functionals is still an active field of research (Mansfield, 1981;
Hosseini, Naghdabadi, & Jabbarzadeh, 2008; Kundu & Han, 2009; Cho & Rhee, 2012).
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The plan of the paper is as follows. First we present the relations and equations of nonlinear shallow shell theory, and
discuss the mathematical model for an obstacle. Introducing the shell–obstacle equilibrium problem as the problem of
minimizing the total potential energy of the system, we discuss the properties of the appropriate solution space. Finally,
we present the principal ideas needed to solve the minimization problem using FEM, demonstrate the existence of the
approximate FEM solutions, and establish convergence of these approximations to a weak solution of the problem.

2. Model of a shallow shell with an obstacle

2.1. Shallow shell model

A shell occupies a three-dimensional volume determined by a surface S� and its normals extending to length h away from
both sides of S�. That is, the shell is the set of points uðxÞ þ ha3ðxÞ, where h 2 ½�h;h� and x ¼ ðn1; n2Þ are the intrinsic coordi-
nates in S�. We call S� the midsurface of the shell and 2h its thickness. Suppose S� is the image of an open set �X � R2 under an
injective mapping u : �X! R3 in C2ðXÞ. We also assume X is bounded and connected, with a piecewise differentiable bound-
ary. Furthermore, the vectors @au ¼ aa, where @a denotes the partial derivative with respect to na, are linearly independent,
being a covariant basis of the tangent space at each point in S�. The contravariant basis will be denoted by aa. In what follows,
Greek indices take values in the set f1;2g and Latin indices take values in f1;2;3g. We complement the covariant basis aa

with the normal vector

a3 ¼ a3 ¼
a1 � a2

ja1 � a2j
:

The components of the first and second fundamental forms of the midsurface are aab ¼ aa � ab and bab ¼ a3 � @aab,
respectively.

The area element of the midsurface is given by dX ¼
ffiffiffi
a
p

dn1 dn2, where a ¼ detðaabÞ. We assume that jh=Rj � 1, where R
is the minimum curvature of S�, and that aðxÞP c > 0 at every point x 2 X.

In what follows Einstein’s summation rule over repeated sub-superscripts is used. The vector field u ¼ uaaa represents
the displacement of each point in S� from its reference or initial configuration. It is known that under the Kirchhoff–Love
hypothesis and shallowness of the shell, the rotation vector can be approximated as x ¼ @au3aa so that the displacement
of a point uðxÞ þ ha3ðxÞ in the shell is given by

uh ¼ uðxÞ þ hxðxÞ: ð1Þ

Hence it suffices to know the displacement of the midsurface, as displacements in the rest of the shell are already deter-
mined. The Christoffel symbols are Cc

ab ¼ ac � @baa, and the covariant derivatives of a vector field u ¼ uaaa in S� are defined
by

uajb ¼ @bua � Cc
abuc; u3ja ¼ @au3; u3jab ¼ @abu3 � Cc

ab@cu3:

The strain tensor of the midsurface cabðuÞ and the tensor of change of curvature qabðuÞ for the shallow shell model are
given by Vorovich (1999)

cabðuÞ ¼
1
2
ðuajb þ ubjaÞ � babu3 þ

1
2
@au3@bu3; ð2Þ

qabðuÞ ¼ u3jab: ð3Þ

Assuming that Hooke’s law holds, the tangential stress tensor nabðuÞ and the bending moments mabðuÞ are

nabðuÞ ¼ hEabklcklðuÞ;

mabðuÞ ¼ 1
3

h3EabklqklðuÞ;

where Eabkl ¼ Eklab is the tensor of elastic moduli for plane elasticity. For isotropic and homogeneous bodies, the tensor Eabkl

depends on the geometry of the shell, Young’s modulus E, and Poisson’s ratio m via the relation

Eabkl ¼ E
1þ m

aakabl þ aalabk þ 2m
1� m

aabakl
� �

:

We assume in general that the functions Eabkl are bounded and piecewise continuous in X and that the tensor of elastic mod-
uli is uniformly positive definite, i.e., there exists a constant c > 0 such that

EabklcabðuÞcklðuÞP ccabðuÞcabðuÞ

for any symmetric tensor cab at each point of X.
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