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A B S T R A C T

Purpose: We aimed to explore the temporal stability of radiomic features in the presence of tumor motion and
the prognostic powers of temporally stable features.
Methods: We selected single fraction dynamic electronic portal imaging device (EPID) (n=275 frames) and
static digitally reconstructed radiographs (DRRs) of 11 lung cancer patients, who received stereotactic body
radiation therapy (SBRT) under free breathing. Forty-seven statistical radiomic features, which consisted of 14
histogram-based features and 33 texture features derived from the graylevel co-occurrence and graylevel run-
length matrices, were computed. The temporal stability was assessed by using a multiplication of the intra-class
correlation coefficients (ICCs) between features derived from the EPID and DRR images at three quantization
levels. The prognostic powers of the features were investigated using a different database of lung cancer patients
(n=221) based on a Kaplan-Meier survival analysis.
Results: Fifteen radiomic features were found to be temporally stable for various quantization levels. Among
these features, seven features have shown potentials for prognostic prediction in lung cancer patients.
Conclusions: This study suggests a novel approach to select temporally stable radiomic features, which could
hold prognostic powers in lung cancer patients.

1. Introduction

Radiomics is a novel field that massively and comprehensively
analyzes a large number of medical images, and extracts mineable data
(phenotypic features) that can make it possible to practically carry out
precision medicine [1,2]. A primary function of the radiomic features
decoding tumor phenotypes is to characterize intra-tumor hetero-
geneity, which is associated with the therapeutic response of cancer
patients [3,4], by quantifying the spatial relationship between image
pixels/voxels [2,5], thereby representing the inhomogeneous distribu-
tion of pixel/voxel values.

The assessment of the temporal stability, i.e. the consistency of the
feature values against temporal variability sources in multi-dimensional
medical images, is essential for the development of robust prognostic
models based on the temporally stable radiomic features. The radiomic
features were extracted from images acquired by various imaging
modalities, mainly diagnostic or treatment planning computed tomo-
graphy (CT) [5–7], and 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) for lung cancer patients [8,9]. In CT images,
radiomic features have shown robustness against variability in image
characteristics such as number of graylevels [7] and image re-
construction algorithms [10]. However, a few studies have investigated
the temporal stability of the radiomic features within intervals of
15min [6], or in images including time-varying events such as the in-
jection of contrast-enhancement materials [11] or respiratory motion
[12]. Fave et al. have investigated the stability of 68 radiomic features
against tumor motion; however, the evaluation was performed on two
test–retest image sets acquired with 15min intervals, as well as on cone
beam CT (CBCT) images of a tumor texture insert with simulated uni-
directional displacements [13].

Radiomic features comprise several types of image features in-
cluding statistical features. A recent systematic review [14], which was
based on 97 relevant research papers, have reported several associa-
tions between statistical features and tumor characteristics including
tumor stage [6], metastasis [15], treatment response [16] and genetic
content of lung cancers [6,17]. The statistical features can be classified
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into two subtypes, i.e. histogram-based features and texture features.
The histogram-based features are derived from the histogram of the
image, which demonstrates the grayscale levels (quantization levels)
with their occurrence frequencies within a defined region-of-interest
(ROI). Thus, the histogram-based features are overall descriptors of the
distribution of the quantization levels in the ROI, without considering
the spatial relationships between the quantization levels. The texture
features emphasize the local distribution of the quantization levels
within the ROI. A graylevel co-occurrence matrix (GLCM), which is
used for deriving the textural features, is built by using the number,
distance and angle of quantization level combinations in the image
[18]. Another matrix is the graylevel run-length matrix (GLRLM) which
includes the frequency of pixels/voxels sequences with similar quanti-
zation levels in all directions [19]. All statistical features are dependent
on the number of grayscale or quantization levels. Therefore, tempo-
rally stable radiomic features were explored with taking into account
the robustness of various numbers of quantization levels in this study.

Temporally stable features may be independent, i.e. robust against
changes in pixel/voxel values caused by a tumor motion. Up to our
knowledge, no studies have investigated the temporal stability of the
radiomic features with relatively higher frame rates using dynamic
portal images, e.g. electronic portal imaging device (EPID) images.
Therefore, the purpose of this study was to assess the temporal stability
of radiomic features based on EPID images. Since the prognosis pre-
diction, in terms of prediction of the overall survival probability, has
been an important end-point of radiomic approaches [6,12,14,20], this
study attempted to select temporally stable radiomic features posses-
sing prognostic powers.

2. Materials and Methods

2.1. Clinical cases

This retrospective study was performed under a protocol approved
by the institutional review board of our university hospital. Eleven
patients with clinically diagnosed lung cancers, who received stereo-
tactic body radiation therapy (SBRT) from 2013 to 2015, were selected
for this study. The patients’ characteristics are summarized in Table 1.
Nine patients received 48 Gy/4 fractions and 2 patients received 54 Gy/
4 fractions, prescribed at isocenters in four fractions, with an accel-
erating voltage of 6MV on a linear accelerator (Clinac 21EX; Varian
Medical Systems Inc., Palo Alto, USA). The dose was delivered with a
dose rate of 600MU/min under free-breathing in two beam angles
conformal with a fixed geometry. All patients were treated with the
same linear accelerator.

In this study, EPID images and digitally reconstructed radiographs
(DRRs) were used as dynamic and static portal images, respectively.
The EPID images were acquired by using an amorphous silicon EPID

(Portal Vision aS-1000; Varian Medical Systems Inc., Palo Alto, USA)
with 16-bit quantization levels and a matrix size of 1024×768 pixels,
pixel size of 0.39mm and a frame rate of 13.0 frames/s on average. The
EPID images were acquired at the cine mode during the treatment time
of the four radiation treatment fractions. The number of frames ac-
quired for each patient at each fraction is shown in Table 1. The mean
and total number of acquired frames for each session in all the patients
were 83.09 and 914 frames, respectively. All the EPID images were
acquired with the same EPID panel. For consistency, sequences of
25 frames/case from the EPID images acquired at the first treatment
fraction for each patient were selected for analysis of the temporal
stability of the radiomic features.

In our institution, the EPID has been calibrated for removing
background noise and providing a linear and spatially uniform energy
response for the EPID images. The detector response was calibrated
once a month by acquiring flood field and dark field images. The flood
field image was acquired by the uniform irradiation of the EPID, and
was used for adjusting the differences in pixel sensitivities. The dark
field image was acquired by averaging a sequence of 20 frames without
irradiation, and was used for calculating the off-set of the pixel values.
A beam profile for off-axis correction provided by the linac’s manu-
facturer was used in the flood field calibration. The exposure MU was
used as a calibrated unit, and the calibration was performed by setting
the EPID at the isocenter plane with a source-to-detector distance of
100 cm while irradiating the EPID with 100MU with a beam energy of
6MV.

The DRRs were reconstructed from the planning CT images which
were acquired at free-breathing. The planning CT images were acquired
by using a 4-slice CT scanner (Mx 8000; Philips, Amsterdam, The
Netherlands) with 12-bit quantization levels, a matrix size of
512× 512 pixels, and a slice thickness of 2.0 mm. The radiation
treatment plans including delineations of the gross tumor volume (GTV)
on the planning CT image were made based on a consensus between
two experienced radiation oncologists using a commercial treatment
planning system (Eclipse, Varian Medical Systems Inc., Palo Alto, USA).
The internal target volume (ITV) margin was defined for each patient
based on a 4D CT scan. First, GTVs were delineated at images in the
end-of-exhale (EE) and end-of-inhale (EI) phases of the respiratory
cycle. The ITV was then computed as the OR region of the two GTVs,
and the calculated volume was used for defining the ITV in the planning
CT image. The clinical target volume (CTV) was defined as the ITV plus
2mm around it. The planning target volume (PTV) was defined as the
CTV plus a setup margin of 5mm around it. The prescribed dose was
defined as the minimum dose received by 95% of the PTV. Further
details on the reconstruction of the image were described in Refs.
[21,22]. The geometric setting conformed to that of the EPID mounted
on the linear accelerator. In order to avoid the anatomical structures
overlapping with the tumor regions (e.g. ribs and heart), only images

Table 1
Characteristics of clinical cases used in this study.

Patient No. Gantry angle
(°)

Age Sex Tumor
location

Tumor size (major
axis; mm)

Histology TNM grade Tumor type Prescribed dose/No. of
fractions (Gy/Fr)

Total number of frames
per fraction

1 180 86 M RLL 20 Unknown cT1aN0M0 Solid 48/4 65
2 195 78 F RUL 15 N/A cT1aN0M0 GGO 48/4 81
3 190 77 M RUL 8 META (N/C) No record Solid 48/4 86
4 195 78 M RUL 23 ADN cT2aN0M0 Solid 54/4 77
5 180 84 M RUL 20 Unknown cT1bN0M0 Mixed GGO 48/4 97
6 180 67 M RUL 8 META (N/C) No record Solid 48/4 83
7 180 70 M RLL 12 Unknown No record GGO 48/4 64
8 170 83 F RLL 20 SCC cT1aN0M0 Solid 48/4 63
9 170 87 F RUL 15 Unknown No record GGO 48/4 74
10 180 76 M RUL 24 REC (N/C) No record Solid 48/4 90
11 197 58 M RUL 14 META (N/C) No record Solid 54/4 134

M: Male; F: Female; RUL: Right-Upper Lobe; RLL: Right-Lower Lobe; GGO: Ground Glass Opacity; SCC: Squamous Cell Carcinoma; ADN: Adenocarcinoma; META: Metastasis; REC:
Recurrence; N/C: Not confirmed.

M. Soufi et al. Physica Medica 46 (2018) 32–44

33



Download English Version:

https://daneshyari.com/en/article/8248844

Download Persian Version:

https://daneshyari.com/article/8248844

Daneshyari.com

https://daneshyari.com/en/article/8248844
https://daneshyari.com/article/8248844
https://daneshyari.com

