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a b s t r a c t

The present paper is concerned with scattering of surface and interface waves by a vertical
plate in a fluid consisting of a layer of finite depth bounded above by a free surface and
below by an infinite layer of fluid of density greater than the upper layer. For such a situ-
ation time-harmonic waves can propagate with two different wavenumbers K and v ð> KÞ
along the free surface and the interface respectively. The problems are formulated in terms
of hypersingular integral equations by suitable applications of Green’s integral theorem in
terms of difference of potential function across the barrier. These integral equations are
solved by a collocation method using a finite series involving Chebyshev polynomials.
Reflection and transmission coefficients for incident waves of wavenumbers K and v are
computed numerically and depicted graphically in a number of figures for various values
of different parameters. The energy identities are used as a partial check on the correctness
of the numerical results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stokes (1847) first investigated propagation of waves in na two-layer fluid assuming linear theory. In the classical treatise
by Lamb (1932, Section 231), it was shown that in a two-layer fluid with a free surface there exists two possible linear wave
systems at a given frequency each with a different wavenumber, the waves with lower wavenumber (or mode) propagates
along the free surface while those with higher wavenumber propagates along the interface. When a wave train of a particular
mode encounters an obstacle, it is partially reflected into waves of both modes and also partially transmitted similarly. Thus
there is a transfer of energy from surface wave to interface wave and vice-versa. This makes the study of wave scattering
problems in a two-layer fluid interesting. Linton and McIver (1995) developed the general theory for two-dimensional mo-
tion in a two-layer fluid in which the lower layer of heavier density extends infinitely downwards and the upper layer of
lower density has a free surface. They investigated the problem of two-dimensional wave scattering by a long horizontal cir-
cular cylinder submerged in either layer by employing multipole expansion method. This problem arose due to the plan to
build submerged pipe bridge across a Norwegian fjord consisting of a layer of fresh water on top of a deep layer of salt water.
Linton and Cadby (2002) extended the work of Linton and McIver (1995) to oblique scattering. Manam and Sahoo (2005)
obtained analytical solutions for the radiation and scattering of oblique waves by a porous barrier in a two-layer fluid having
a free surface. Das and Mandal (2007) extended the problem of Linton and McIver (1995) and Linton and Cadby (2002) where
the upper layer has a thin ice-cover modelled as a thin infinite elastic plate. Wave scattering problems involving thin vertical
barriers in a two-layer fluid have gained considerable interest in the literature recently. The corresponding problem for a
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single fluid bounded by a free surface wherein the barrier is either fully submerged and extends infinitely downwards or
partially immersed or submerged in an infinitely deep water was well studied by Dean (1945), Ursell (1947) and Evans
(1970) and many others employing a variety of mathematical techniques. This class of problems in infinitely deep water
is among limited problems which admit of closed form solutions. Mandal, Banerjea, and Dolai (1995) considered two super-
posed fluids wherein the upper fluid extends infinitely upwards and the lower fluid extends infinitely downwards and a thin
vertical barrier is submerged in the lower fluid and extends infinitely downwards. Dolai and Mandal (1996) investigated the
problem of interface wave diffraction by a thin finite flat plate submerged in the lower fluid of two superposed infinite fluids,
the plate being inclined at an arbitrary angle with the vertical. They used a hypersingular integral equation formulation and
employed the numerical procedure of Parsons and Martin (1992, 1994) to obtain the reflection and transmission coefficients.

The present paper is concerned with scattering of surface and interface waves by a vertical plate partially immersed in the
upper layer of a two-layer fluid, the upper layer being of finite height and having a free surface while the lower layer extend-
ing infinitely downwards. By suitable application of Green’s integral theorem in the two-fluid region and taking care of the
interface conditions in an appropriate manner, the problem is formulated here in terms of a hypersingular integral equation
for the difference of velocity potential across the barrier. The hypersingular integral equation is then solved numerically by
using a collocation method based on Chebyshev polynomial approximation (Parsons & Martin, 1992, 1994). The solution of
this hypersingular integral equation is then utilized to compute the reflection and transmission coefficients. These were ob-
tained numerically and presented graphically for various values of the wavenumber. From the numerical results it is found
that reflection and transmission coefficients for both surface waves and interface waves exhibit oscillatory behaviours as the
ratio of densities of upper and lower fluid increases. The energy identities are used to check the correctness of the numerical
results presented here.

2. Statement of the problem

We consider two-dimensional irrotational, time-harmonic motion in two-layer fluid of which the upper layer is of density
q1 and the lower layer is of density q2ð> q1Þ. A thin rigid vertical plate described by x ¼ 0; 0 < y < a, is partially immersed in
the upper layer which occupies the region 0 < y < h ðh > aÞwith y ¼ 0 as the mean free surface, y-axis being taken vertically
downwards. The lower fluid occupies the region h < y <1 where y ¼ h is the undisturbed mean interface of the two fluids.
Under the usual assumptions of linear theory, the velocity potentials describing fluid motions in the upper and lower fluid
regions are

Uðx; y; tÞ ¼ Reð/ðx; yÞe�ixtÞ;
Wðx; y; tÞ ¼ Reðwðx; yÞe�ixtÞ;

respectively, where x is the circular frequency. Here, / and w satisfy the Laplace equation

r2/ ¼ 0; 0 < y < h; ð2:1Þ
r2w ¼ 0; h < y <1: ð2:2Þ

Linearized boundary conditions at the free surface, plate and at the interface are

K/þ /y ¼ 0; on y ¼ 0; ð2:3Þ
/x ¼ 0; on x ¼ 0; 0 < y < a; ð2:4Þ
/y ¼ wy; on y ¼ h; ð2:5Þ
sðK/þ /yÞ ¼ Kwþ wy; on y ¼ h; ð2:6Þ

where s ¼ q1
q2

and K ¼ x2

g ; g being the acceleration due to gravity.
Also, the bottom condition is

rw! 0; as y!1: ð2:7Þ

In a two-layer fluid, progressive waves are described by

/ ¼ Ae�iux½ðKr� uÞe2uhe�uy þ ðK � uÞeuy�; ð2:8Þ
w ¼ Ae�iuxKðr� 1Þe2uhe�uy; ð2:9Þ

where u satisfies the dispersion relation

ðu� KÞ½Kðrþ e�2uhÞ � uð1� e�2uhÞ� ¼ 0: ð2:10Þ

with r ¼ 1þs
1�s. It follows that u ¼ K and u ¼ v where

ðK þ vÞe�vh þ ðKr� vÞevh ¼ 0: ð2:11Þ
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