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a b s t r a c t

The main aim of the actual problem is to obtain Lagrange equations when the chosen
parameters do not respect material rigidity, so inducing strains (and Continuum Mechan-
ics). The proposed method consist of two principal parts: first the definition of a family of
generalised displacements involving strains and second the elimination of the Cauchy
stress tensor in the Virtual Work Principle valuable in Continuum Mechanics. As a final
statement the rigidity law is introduced on the parameters to complete the obtained equa-
tions. On a friction problem, it is highlighted the necessity to really distinguish between
these mathematical compatibility conditions taking account of the nature of the material
and other relations expressing some experimental boundary conditions like friction laws.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a series of several papers (Schutte & Udwadia, 2011; Udwadia & Kalaba, 2001; Udwadia & Schutte 2010), Udwadia et al.
have published interesting papers concerning Multibody Dynamical Systems, with particular attention to the numerical
treatment of mechanical equations. In 2011 they resumed their previous researches and proposed a study of a spacecraft
system with numerical results. The main idea of their works concerns the treatment of the mechanical equations completed
by constraint equations whatever the number of parameters, even if this last number is larger than the minimum required as
it is the case with quaternions. Other recent results concerning Continuum Mechanics and Analytical Dynamics may be
found in the two papers (O’reilly and Srinivasa, 2001; Rajagopal and Srinivasa, 2005) that propose other point of views.
In the referenced papers, interesting introductions propose a review of earlier works on the Analytical Dynamics from the
well-known Lagrange equations (Goldstein, 1950, Lagrange, 1787), but, since this subject is classical and known, it will
not be repeated here.

However we will note some limitations of their results. First, they use equality constraints of the type uiðq; _q; tÞ ¼ 0,
i = 1,2, . . .,m, as in formula (17) of their paper (Schutte & Udwadia, 2011), where the above functions are smooth enough
for twice time derivations. But in practical problems, friction leads to non smooth equations, in fact to variational inequal-
ities associate to inequality constraint, except in the very particular case of no slipping (and no-friction): it is evident that if
the constraints are unilateral, a theory that uses equality constraints cannot be apply. Second, even if these constraints are
smooth enough, by example if a rigid body is divided, it is not clear why the virtual n-displacements w imply that the virtual
work done by forces of constraints is written as wT � Cðq; _q; tÞ, where C is an n-vector describing the nature of the constraints.

A third (and essential) remark concerns the use of parameters. When rigidity is a priori included in the definition of
parameters, as it is the case with Euler angles for rotational motions, then D’Alembert Principle gives the equations of
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motions by an implicit elimination of internal forces (i.e. stresses). But if rigidity is imposed by explicit relations, as it is the
case with quaternions for rotational motions leading to one smooth constraint, why it is assumed (Udwadia & Schutte, 2010)
that the virtual work associated to this rigidity constraint appears on the form wT � Cðq; _q; tÞ? This hypothesis appears as
undue because made without justification. Taking the example of the (q0,q3)-quaternions describing a two-dimensional
rotation
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(x actual position; X initial position), why the relation C = Id (or qTq = 1) requires that associate virtual work appears like
wT � Cðq; _q; tÞ in order to take account of interior forces? In reality, as an example, the circle X2 + Y2 = 1 become the circle
x2 þ y2 ¼ 1þ 4q2

3ðq2
0 þ q2

3 � 1Þ and this last evolution must be considered as a motion of some deformable (e.g. elastic) body
if the above constraint qTq = 1 is not fulfilled. Then, if the above rigidity constraint is not taken account, it is clear that such
parameters require Continuum Mechanics Principles, since strains (so Cauchy stresses) must be introduced. We conclude
that D’Alembert Principles that govern rigid bodies motions only cannot be convenient for a priori deformable bodies.

These questions are fundamental. So, the present work proposes to make clear the origin of constraints, particularly if
they express rigidity as in the case of quaternions or concern friction as in usual technological systems: clearly, the first
one is a material constitutive law whereas the second one is a boundary condition. In the following, we highlight the origin
of the mechanical equations, particularly the necessity to use the Virtual Work Principle (VWP) for a continuum with Cauchy
stress tensor if rigidity is not implicitly satisfied (Souchet, 2004). Finally, as an example, we propose to illustrate the obtained
results by obtaining equations in a problem involving contact with friction. In the following we propose three steps in our
basic statement.

2. First step: Virtual Work Principle in Continuum Mechanics

It is natural to consider a single rigid body as a continuum B whose elements, called material points, constitute a three-
dimensional manifold. A global configuration Bt (or B for simplicity of notations) of the body at time t is specified in an iner-
tial coordinate frame To = Oo xoyozo by some smooth function x = v(X, t), where x is the actual position of the particle located
at X at initial time; Bo is the initial configuration or some reference configuration. We note by O the point defined by
x = v(O0, t).

In Classical Continuum Mechanics, two geometric definitions are introduced: first the deformation gradient F = ov/dX that
is a smooth, invertible and linear mapping, second the Cauchy-Green tensor C = FTF that is a measure of strain in the contin-
uous body. Naturally F and C are tensors that represent local properties around the point X at time t. We note that the con-
dition J = detF > 0 since at initial time we have Jo = 1. Kinematical quantities are also introduced, viz velocity _x ¼ @v=@t and
acceleration €x ¼ @2v=@t2 on the initial configuration B0, respectively u(x,t) and a(x,t) on the actual configuration B, satisfying
the identity gradu ¼ ð@F=@tÞF�1 (note that time derivative is denoted by a point).

Contact forces developed in the interior of the body B are taken into account by the Cauchy stress symmetric tensor r
defined on the actual configuration B. The Virtual Work Principle (in brief VWP) relies acceleration and interior forces
due to Cauchy stressses to exterior forces f on the volume B and u on the surface C surrounding B, according satisfaction
to the linear form
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defined on the space V of (virtual) piecewise continuous ‘‘velocities’’ (or ‘‘displacements’’) v. In the above formula, q designs
density, the point (.) is the scalar product of vectors and the double point (:) the scalar product of second order tensors. This
formula is the basic statement of Classical Continuum Mechanics (Souchet, 2004), before introduction of constitutive laws
and definition of boundary and initial value problems. In a first time we apply this principle to bodies whose deformation
depends on independent parameters qi functions of time t, i.e.

x ¼ Gðt; qðtÞ; XÞ; q ¼ ðq1; q2; . . . qnÞ
T ð2Þ

Finally we recall that this above principle VWP works for any part of the body and also for any system B = (B1,B2, . . .,Bm) of
bodies; as an example a body B may be divided into two sub-bodies.

3. Second step: generalised displacements

Now in Classical Dynamics, rigidity is a constitutive law of materials, so that the motion of such a single rigid body B is
defined by some relation x = T0(t)+R(t)X where T0(t) is a translation and R(t) a rotation in the three dimensional space; it is
well known that T0 depends generally on three coordinates, R depends also on three coordinates and satisfies R�1 = RT We
note by O the point defined by x = T0(t), translated of the origin X = 0: on a practical manner we first define the point O,
and then the rotation x � T0(t) = R(t)X.

28 R. Souchet / International Journal of Engineering Science 76 (2014) 27–33



Download English Version:

https://daneshyari.com/en/article/824929

Download Persian Version:

https://daneshyari.com/article/824929

Daneshyari.com

https://daneshyari.com/en/article/824929
https://daneshyari.com/article/824929
https://daneshyari.com

