ARTICLE IN PRESS

Physica Medica xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Physica Medica

journal homepage: http://www.physicamedica.com

Original paper

Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model

Deni Hardiansyah^{a,b,1}, Ali Asgar Attarwala^{a,c,1}, Peter Kletting^d, Felix M. Mottaghy^{e,f}, Gerhard Glatting^{a,d,*}

^a Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

^b Department of Electrical Engineering, Universitas Padjadjaran, Bandung, Indonesia

^c Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

^d Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany

^e Klinik für Nuklearmedizin, University Hospital, RWTH Aachen University, Aachen, Germany

^f Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands

ARTICLE INFO

Article history: Received 2 January 2017 Received in Revised form 27 June 2017 Accepted 28 June 2017 Available online xxxx

Keywords: PBPK model PRRT treatment planning Dynamic PET PET noise model

ABSTRACT

Purpose: To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptidereceptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model.

Methods: PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152 ± 15) MBq of ¹¹¹In-DTPAOC (total peptide amount (5.78 ± 0.25) nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150 MBq ⁶⁸Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35 min p.i. (P₁), 4 h p.i. (P₂) and the combination of P₁ and P₂ (P₃) were simulated. Each measurement was simulated with four frames of 5 min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1 GBq of ⁹⁰Y-DOTATATE over 30 min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities *v*.

Results: For P₁ and P₂ the population variabilities of kidneys, liver and spleen were acceptable (v < 10%). For the tumours and the remainders, the values were large (up to 25%). For P₃, population variabilities for all organs including the remainder further improved, except that of the tumour (v > 10%).

Conclusion: Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information.

© 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Peptide-receptor radionuclide therapy (PRRT) is a frequently used method for the treatment of neuroendocrine tumours (NETs) [1,2]. The accuracy of activity quantification plays an important role in the PRRT treatment planning [3,4]. This quantification is based on measured individual biokinetics using planar scintigraphy data [1] or SPECT/CT [5]. It has been shown that positron emission tomography (PET) is more accurate for activity quantification as compared to planar scintigraphy [6] or SPECT, due to higher sensitivity and better spatial resolution [7]. For example, PET with

http://dx.doi.org/10.1016/j.ejmp.2017.06.024

1120-1797/© 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Hardiansyah D et al. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model. Phys. Med. (2017), http://dx.doi.org/10.1016/j.ejmp.2017.06.024

⁶⁸Ga-labelled somatostatin analogues has a high diagnostic accuracy and correlates with radionuclide uptake in PRRT [8–10]. However, up to now pre-therapeutic PET data were not used to predict the therapeutic time-integrated activity coefficients (TIACs) due to different affinities, amounts and short physical half-life of the used radiopharmaceuticals.

Previously we have shown in a simulation study that a *static* PET measurement with two time points at 1 and 4 h p.i. can possibly be used to predict the therapeutic biodistribution in the organ at risk, e.g. kidneys and liver with an acceptable accuracy [11]. Furthermore, it was demonstrated based on a simulation study that accurate dosimetry for the kidneys could possibly be performed for all relevant levels of noise [12]. However, treatment planning using *static* PET measurements at different time points is time consuming for both, patient and staff. Implementation of one *dynamic* PET measurement resolves this limitation as dynamic PET provides

^{*} Corresponding author at: Medizinische Strahlenphysik, Klinik für Nuklearmedizin, Universität Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.

E-mail address: gerhard.glatting@uni-ulm.de (G. Glatting).

¹ Equal contribution.

both spatial and temporal information on biokinetics of the measurement interval [13].

Therefore, the aim of this *in silico* study was to investigate the accuracy of predicted TIACs using simulated *dynamic* PET measurements and a published PBPK model with a certain population and individual parameters [14] for treatment planning of PRRT.

2. Material and methods

2.1. Patient data

Fifteen metastasized neuroendocrine tumour (NET) patients planned for four cycles of therapy with ⁹⁰Y-DOTATOC were included (Fig. 1 A). The same physiological and biokinetics patient data as in our previous study were used [15], which are described elsewhere [15].

2.2. PBPK model

A previously published PBPK model describing the biodistribution of sst2 specific peptides [14] was used to simulate and analyse the pre-therapeutic and therapeutic biodistribution of the radiolabelled species, i.e., ⁶⁸Ga-DOTATATE and ⁹⁰Y-DOTATATE respectively. The model includes detailed modelling of the organs: tumour, kidneys, spleen, liver and remainder. It includes labelled and unlabelled peptide systems with corresponding competition of binding to sst2. The internalization rate λ_{int} , dissociation rate k_{off} , dissociation constant K_D and the physical decay λ_{phys} were taken from the literature as shown in Table 1 [16–18].

Quality control of fits was checked by visual inspection of the graphs, observing the adjusted R^2 (near to 1) and the coefficient of variation of fitted parameters CV (CV < 25% corresponds to "precise", 25% < CV < 50% to "acceptable") [19].

2.3. Derivation of the true and PET-predicted MPPs

Fig. 1 shows the general workflow of the study. The PBPK model was implemented using simulation analysis and modelling software SAAMII v. 2.2 (The Epsilon Group, USA) [20]. Two types of mathematical patient phantoms (MPPs) were built for the analysis, i.e. true MPPs and PET-predicted MPPs.

True MPPs consisted of the PBPK model and a set of assumed true parameters. In brief, the following parameters were individually estimated from the patient data (Section 2.1): the fraction of filtered peptide f_{ex} , degradation rate of the peptide in each organ λ_{deg} , tumour perfusion f_{TU} , total number of receptor in each organ R_{organ} , glomerular filtration rate *GFR* and tumour volume V_{TU} (Fig. 1 C and F).

PopKinetic software (PopKinetic v. 2.2, The Epsilon Group, USA) [20] with the standard-two-stage (STS) method was implemented to derive the Bayesian parameters from the population (Fig. 1 D), by calculating the mean and standard deviation of the parameters

Fig. 1. Workflow of the performed fittings and simulations (Sections 2.3 and 2.4). PRRT: peptide-receptor radionuclide therapy; TIACs: time-integrated activity coefficients; PBPK: physiologically-based pharmacokinetic (model).

Please cite this article in press as: Hardiansyah D et al. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model. Phys. Med. (2017), http://dx.doi.org/10.1016/j.ejmp.2017.06.024 Download English Version:

https://daneshyari.com/en/article/8249519

Download Persian Version:

https://daneshyari.com/article/8249519

Daneshyari.com