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a b s t r a c t

The purpose of this paper is to study the effect of a heat source on the solution to the equa-
tions for an incompressible heat conducting viscous fluid. The validity of both the linear
instability and global nonlinear energy stability thresholds are tested using three dimen-
sional simulation. Our results show that the linear threshold accurately predicts on the
onset of instability in the basic steady state. However, the required time to arrive at the
steady state increases significantly as the Rayleigh number tends to the linear threshold.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Rayleigh–Bénard problem is the major section for the problem of the onset of convection in a horizontal fluid layer uni-
formly heated from below. Rayleigh (1916) provided an analysis on the assumption that the convection was induced by
buoyancy effects. Rayleigh introduced an approximation to the basic equations of motion that he ascribed to Boussinesq
(1903). However, Joseph (1976) found that the approximation had been earlier applied by Oberbeck (1879). The parameter
whose value determines the onset of convection is called the Rayleigh number. Joseph (1976) noticed that this parameter
appeared in a study by Lorenz (1881), who also used the approximation employed by Oberbeck.

The Oberbeck–Boussinesq approximation is the basis of most of the contemporary studies on natural or mixed convection
flows. In the Oberbeck–Boussinesq approximation, all fluid properties such as viscosity and density can be taken as constants
except that a buoyancy term proportional to a density difference is retained in the momentum equation. Thus, the fluid is
taken as quasi-incompressible, the divergence of the velocity is approximated by zero in the continuity equation, and the
term involving the product of the pressure and the divergence of the velocity is neglected in the thermal energy equation;
see, for example, Section 8 of Chandrasekhar (1961). Several Oberbeck–Boussinesq approximations have been applied on the
full Navier–Stokes equations. It is generally used in the framework of the natural convection problems such as the Rayleigh–
Bénard configuration, and provides a simplified set of equations which is much more tractable for both numerical and
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analytical purposes, since all the acoustic scales have been eliminated. Rayleigh (1916) employed the simplified thermal en-
ergy equation and he ascribed it to Boussinesq (1903). In Rajagopal et al. (1996), intend to provide a rigorous derivation of
the Oberbeck–Boussinesq approximation in the framework of a full thermodynamical theory of the Navier–Stokes equations.
Then, Rajagopal et al. (1998) introduced a justification for the approximation within the full thermodynamical theory for
Navier–Stokes–Fourier fluids. Hills and Roberts (1991) provided important idea to adapt a new method of treating the
constraint of mechanical incompressibility. Recently, the Oberbeck–Boussinesq approximation have been developed
intensely by Rajagopal (2006), Rajagopala et al. (2009), Barletta (2009) and Barletta and Nield (2009, 2010).

Straughan (1991) obtained quantitative non-linear stability estimates which guarantee nonlinear stability for the prob-
lem of penetrative convection in a plane layer with a nonuniform heat source, and a constant temperature upper surface,
while the lower surface is subject to a prescribed heat flux. In addition to the non-linear results which establish a critical
Rayleigh number below which convection cannot occur, Straughan (1991) calculated the linear value above which convec-
tion occurs. When the difference between the linear and nonlinear thresholds is very large, the comparison between these
thresholds is very interesting and useful. Thus we repeat the stability analysis of Straughan (1991) to select new situations
which have very big subcritical region. Then, we develop a three dimensions simulation for the problem. To do this, firstly,
we transform the problem to velocity–vorticity formulation, then we use a second order finite difference schemes. We use
implicit and explicit schemes to enforce the free divergence equation. The size of the Box is evaluated according to the
normal modes representation. Moreover, we adopt the periodic boundary conditions for velocity, temperature, and concen-
tration in the x, y dimensions.

In the next Section we present the governing equations of motion and derive the associated perturbation equations and
then in Section 3, we introduce the linear and nonlinear analysis of our system. In Section 4, we transform our system to
velocity–vorticity formulation. Section 5 is devoted to a study numerical solution of the problem in three dimensions.
The results of our numerical investigation are then compiled and discussed in the final Section of the paper.

2. Governing equations

Consider then a layer of heat-conducting viscous fluid with a quadratic equation of state, occupying the horizontal layer
z 2 (0,d) with the lower boundary z = 0 heated by radiation and with the temperature scale selected so that the temperature
at z = d remains a constant, Tu. By assuming the validity of the Oberbeck–Boussinesq approximation, the following local
balance equations hold:

v i;t þ v j v i;j ¼ �
1
qm

p;i þ m Dv i � gki½1� aðT � TmÞ2�; ð2:1Þ

v i;i ¼ 0; ð2:2Þ
T ;t þ v i T ;i ¼ jDT þ Q ; ð2:3Þ

where v, p, T, v, g, a, and j are respectively velocity, pressure, temperature, viscosity, gravity, a thermal expansion coefficient,
and thermal diffusivity, k = (0,0,1), and standard indicial notation is employed. These equations are defined on the spatial
region R2 � ½0; d�. Here, we have to mention that the effects of pressure work are not taken into account in the energy bal-
ance. The boundary conditions are

v ¼ 0; at z ¼ 0; d; T ¼ Tu; at z ¼ d;
@T
@z
¼ c; at z ¼ 0: ð2:4Þ

We here consider the heat supply function as Q = Q0(ez/d � 1), where Q0 and c are constants. The steady solution ð�v; TÞ cor-
responding to boundary conditions (2.4) is

�v ¼ 0; T ¼ Tu � cðd� zÞ þ Q0d2

j
e� 3

2
� e

z
d þ z

d
þ z2

2d2

� �
;

the hydrostatic pressure being determined from the momentum equation.
To investigate the stability of these solutions, we introduce perturbations (u,h,p) by

v i ¼ �v i þ ui; T ¼ T þ h; p ¼ �pþ p:

Then, the perturbation equations are nondimensionalized according to the scales (stars denote dimensionless quantities)

t ¼ t�
d2

m
; U ¼ m

d
; x ¼ x�d; h ¼ h�T]; d ¼ jðTm � TuÞ

Q 0d2 ;

Pr ¼ m
j
; T] ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffi
m

agdj

r
; R2 ¼ Q2

0d7ga
j3m

; ĉ ¼ jc
Q0d

:

Here Pr is the Prandtl number and R2 is a Rayleigh number. The dimensionless perturbation equations are (after omitting all
stars)

ui; t þ uj ui;j ¼ �p; i þ Dui þ 2Rf1ðzÞhki þ Prkih
2; ð2:5Þ
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