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a b s t r a c t

Acoustics equations are derived in low-viscosity newtonian fluids, when nonlinear effects
are of first order relative to a small dimensionless parameter �, which is a measure of the
Mach number. Another small dimensionless parameter f is used to define low-viscosity pre-
cisely. In this context, using conservation of mass and of linear momentum, one derives
governing equations for complex motions (simultaneous forward and backward propaga-
tion) and simple motions (forward propagation only). Propagation equations are obtained
for four physical quantities (particle displacement, particle velocity, mass density, and
pressure) in eulerian as well as in lagrangian form. For simple waves, the equations for par-
ticle velocity, mass density and pressure are found to be of the Burgers type; that for the
displacement is not of the Burgers type. Consistent with the weak nonlinearity, proper
boundary conditions for the simple-wave equations are derived in both eulerian and
lagrangian forms; these new results are expressed only in terms of the source displacement
and the fluid constants.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to derive acoustics equations in low-viscosity newtonian fluids when nonlinear effects are
weak. This model can be used, at least as a first approximation, to describe propagation in biological tissue with an important
application in ultrasound imaging. Indeed, it is well-known that biological tissue do not behave as newtonian fluids, where
the attenuation coefficients in the range of low viscosity are proportional to the square of the frequency. In contrast, atten-
uation coefficients in biological tissue are proportional to powers of the frequency around unity. At the same time, tissue are
complex materials composed of 85% or more water. In view of this, and of the complexity of analytical viscoelastic models for
tissue, it is accepted that imaging software based on newtonian models give results of good accuracy in medical practice.

The paper is also intended to add to the existing body of knowledge in acoustics, for reasons that are detailed in the
following. First, we derive nonlinear wave equations for particle displacement, particle velocity, mass density and pressure,
together with boundary conditions consistent with the nonlinear theory, some of which are new.

Second, we provide answers to two questions that are left open in Whitham’s monograph. In the author’s words
(Whitham, 1999, p. 96)
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The simplest equation combining both nonlinear propagation effects and diffusivity effects is Burgers’ equation

ct þ c cx ¼ m cxx: ð1:1Þ

. . . In general, if the two effects are important in a problem, there is usually some way of extracting (1.1) either as a precise
approximation or as a useful basis for rough estimates.

In Eq. (1.1), c is the propagation speed, the indices attached to c denote partial derivatives, and m is a constant. After mak-
ing the statement quoted above, Whitham discusses at length properties and solutions of (1.1). He leaves two questions
open, however. The first one concerns the method of approximation that leads to (1.1) in acoustics, for which no indications
(or references) are given. The second one is in relation to the constant m, which remains unspecified in terms of the shear and
compression viscosities.

Third, we consider the derivation of simple-wave equations (forward propagation only) from complex-wave equations
(simultaneous forward and backward propagation). To illustrate the point, consider the classical wave equation

@2f
@t2 þ c2 @

2f
@x2 ¼ 0; ð1:2Þ

where f(x,t) represents a function of the space variable x and time t. Solutions of this equation take the form of both forward
and backward waves propagating with speed c. Such equations in acoustics are derived directly from first principles, namely
conservation of mass and conservation of linear momentum, together with some appropriate approximations. On the other
hand, consider the simple-wave equation

@f
@t
þ c

@f
@x
¼ 0; ð1:3Þ

which, as solutions, admits only of forward waves propagating with speed c. Eq. (1.3) does not in general follow trivially from
(1.2), except when the speed c is a constant and it suffices to split the differential operator of (1.2) into two to justify the
validity of (1.3).

The situation becomes more complicated when c in (1.2) is not a constant, as for example when c is a function of f and
(1.2) becomes nonlinear. To deal with this difficulty, one approach is that of Hamilton and Blackstock (1998) (pp. 50–57).
These authors transform equation (41) (a complex-wave equation) into Burgers equation (54) (a simple-wave equation).
This, however, involves several questionable steps: (i) discarding the term L in their (41); (ii) introducing an auxiliary var-
iable ~p and then assuming that ~p ¼ p; (iii) introducing a retarded time frame and slow scale; (iv) and finally removing their
parameter ~� in order to return to the physical coordinate x. To do away with those steps, we propose here a more direct ap-
proach to derive Burgers equation for the pressure, as in Hamilton and Blackstock (1998), but also extend the work to par-
ticle velocity and mass density.

Fourth, we examine the assumptions that lead to second-order approximation theory. From Hamilton and Blackstock
(1998) (pp. 73–74)

Two assumptions underlie second-order approximation theory. First, the waves are not exceedingly strong; . . . Second, distor-
sion is dominated by cumulative effects; . . . The immediate consequences of these two assumptions are as follows:
. . .

2. Finite displacement of a source from its rest position may be ignored . . .

3. The difference between material (Lagrangian) and spatial (Eulerian) representations may be ignored . . .

Boundary conditions (at the source), however, should be consistent with the second-order approximation, which makes
their consequences 2 and 3 questionable. To elaborate, asssume that the source is a piston-like device and the fluid remains
in contact with the device as it vibrates, so that it is permissible to identify the source displacement with that of the particles
in contact with it. The resulting boundary condition is easily expressed in the lagrangian representation. In the eulerian rep-
resentation, however, the boundary condition should not be written as though the source was not moving (see Hamilton &
Blackstock, 1998, Eq. (3), p. 68). More on this subject can be found in the last section of the paper, where we derive boundary
conditions that take into account second-order terms for all four physical quantities (particle displacement, particle velocity,
mass density and pressure). The additional second-order terms make it clear that the difference between lagrangian and
eulerian representations cannot be ignored. Indeed, even though the equations for simple waves look identical in the two
representations (as can be seen in the last section), nonidentical boundary conditions will yield distinct results. In addition,
there is another reason to keep from identifying the two representations: complex-wave equations do not look identical, as
we shall see later in the last section.

To place this work in its context, we recall that nonlinear wave propagation has a long history, stretching back to over two
hundred years. Originally, the field developed when rational explanations were sought to natural phenomena such as finite-
amplitude waves in gas dynamics or solitary waves in open channels. Illuminating discussions, as well as historical perspec-
tives, on nonlinear acoustics can be found in Whitham (1999), Hamilton and Blackstock (1998) and Drazin and Johnson
(1989). We record here that the method of characteristics, which is the object of a thorough presentation in Whitham
(1999), proved a tool of major importance in the development of nonlinear wave analysis. Among important works in non-
linear acoustics we may cite (Coulouvrat, 1991, 1992; Khokhlov & Soluyan, 1964; Rudenko & Soluyan, 1977; Mendousse,
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