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a b s t r a c t

This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an
asymptotically accurate manner. The problem is both geometrically and materially non-
linear. The geometric non-linearity is handled by allowing for finite deformations and gen-
eralized warping while the material non-linearity is incorporated through hyperelastic
material model. The development, based on the Variational Asymptotic Method (VAM)
with moderate strains and very small thickness to shortest wavelength of the deformation
along the plate reference surface as small parameters, begins with three-dimensional (3-D)
non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D)
through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contri-
butions of this paper are derivation of closed-form analytical expressions for warping func-
tions and stiffness coefficients and a set of recovery relations to express approximately the
3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive
laws, 2-D plate theory and corresponding finite element program have been developed.
Validation of present theory is carried out with a standard test case and the results match
well. Distributions of 3-D results are provided for another test case.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linear isotropic hyperelastic materials have potential applications in space based inflatable structures, pneumatic
membranes, replacements for soft biological tissues, prosthetic devices, compliant robots, high altitude airships and artificial
blood pumps, to name a few. They have special engineering properties like high strength-to-mass ratio, low deflated volume
and low density (Jenkins, 2001). They are subjected to large strains and large deformations (and rotations) due to externally
applied loads.

Despite their potential applications and special engineering properties, there are no generalized analytical and numerical
model characterizations as an alternative to experimental results. The first significant theoretical study of membranes was
carried out by Adkins and Rivlin (1952), using the neo-Hookean (Rivlin, 1948) and Mooney forms (Mooney, 1940) of strain
energy function. A summary of this work was given by Green and Adkin (1960). Later in the 1960s, Hart-Smith and Crisp
(1967) and Klingbeil and Shield (1964) examined the special case of axisymmetrical hyperelastic membrane’s inflation.
These authors proposed analytical solutions for the circular plane membrane inflation problems using different hyperelastic
non-linear constitutive equations. Further, Hart-Smith and Crisp (1967) used thickness-wise distribution of deformation to
estimate the deviation in profile from spherical shape. It is also known that qualitative differences exist between the behav-
ior of bodies made of compressible elastic materials and incompressible elastic materials under the same boundary condi-
tions (Adkins & Rivlin, 1955; Chaudhry & Singh, 1969; Chien-Heng & Widera, 1969; Kerr & Tang, 1967). Mathematical
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formulations for compressible materials are considerably more complicated than for incompressible materials (see Beatty
(1987), Carroll (1988), Carroll & Horgan (1990), Jiang & Ogden (2000) and references listed in Zidi & Cheref (2002)). For very
large deformation, asymptotic solutions are possible, greatly simplifying the analysis (see Ferner & Wu, 1981; Wang & Shield,
1969). An asymptotic expansion is provided for large elastic strain of a circular plate made of isotropic, incompressible mate-
rial by Taber (1987), but the model ignores transverse shear deformation. An asymptotic theory for thin, compressible hyper-
elastic plates is derived by Erbay and Suhubi (1991). They assume that the displacement vector and the stress tensor are
expandable into asymptotic series. Further, Erbay (1997) derived asymptotic non-linear membrane theory of compressible
and incompressible hyperelastic plates for general hyperelastic constitutive models and the effect of material non-linearity.
Application of finite element method to membrane problems was first carried out by Oden and Sato (1967). They considered
three-noded triangular elements and the corresponding non-linear governing equations are solved using the Newton–Raph-
son algorithm for inflation of a plane circular membrane. State of the art developments in membrane analysis are reviewed
by Jenkins and Leonard (1991), and Jenkins (1996). Current developments of plate as 2-D and 3-D elements with various
kinematic models, constitutive forms and numerical integration techniques as well as their relative advantages and disad-
vantages are extensively reviewed in Yang, Saigal, and Liaw (1990), Yang, Saigal, Masud, and Kapania (2000), Sze (2002) and
references therein.

In the current analysis VAM has been applied to non-linear isotropic hyperelastic material model, thus the original three-
dimensional (3-D) non-linear elastic problem splits into a non-linear one-dimensional (1-D), through-the-thickness analysis
and a non-linear, two-dimensional (2-D) plate analysis. This greatly reduces the computational cost compared to 3-D
non-linear finite element analysis. Through-the-thickness analysis provides a 2-D non-linear constitutive law for the plate
equations and a set of recovery relations that express the 3-D field variables (displacements, strains and stresses)
through-the-thickness in terms of 2-D plate variables calculated in the plate analysis (2-D). A unified software package
‘VAMNLM’ (Variational Asymptotic Method applied to Non-linear Material models) was developed to carry out 1-D non-lin-
ear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. Analytical expressions (asymptot-
ically accurate) are derived for stiffness, strains, stresses and 3-D warping field. Validation of present theory is carried out
with a standard test case. Preliminary forms of current analysis results match well with the literature. This paper is the first
to provide asymptotically correct dimensional reduction approach to accurately and efficiently reproduce the complete 3-D
results through-the-thickness for plate structures with nonlinear material model using VAM. To illustrate this novelty, one
more test case is considered to provide complete description of the structural behavior in the form of 3-D displacements,
strains (Green strains) and stresses (Cauchy and second Piola–Kirchhoff stresses) through-the-thickness of the plate.

2. Three-dimensional formulation

A plate, like any other physical structure, is a three-dimensional (3-D) continuum in reality, but because of its possession
of a relatively small thickness h with respect to its other two dimensions, it can be represented as a two-dimensional (2-D)
smooth reference surface usually chosen to be the mid-surface, in its undeformed state, mathematically represented by a set
of two arbitrary, but independent curvilinear coordinates, xa. Here and throughout the formulation, Greek indices assume
values 1 and 2 while Latin indices assume 1, 2, and 3. Dummy indices are summed over their range, except where explicitly
indicated. xa are thus the surface coordinates while x3 is the normal coordinate. Without loss of generality, lines of curva-
tures are chosen to be the curvilinear coordinate curves to simplify the formulation.

Fig. 1 provides a schematic of plate deformation. Let bi and Bi denote the unit vectors along xi in the undeformed and
deformed configurations, respectively. One could then describe the positions of any material point Q(x1,x2,x3) in the unde-
formed and deformed configurations by its position vectors, r̂ and bR, respectively, from any point O, which is fixed in a ref-
erence frame whose motion itself is inertial and/or known, such that

r̂ðx1; x2; x3Þ ¼ rðx1; x2Þ þ x3b3ðx1; x2Þ; ð1ÞbRðx1; x2; x3Þ ¼ Rðx1; x2Þ þ x3B3ðx1; x2Þ þwiðx1; x2; x3ÞBiðx1; x2Þ: ð2Þ

wi(x1,x2,x3) in Eq. (2) above are components of 3-D warping field. Amongst them, w1 and w2 are in-plane warpings (due to
local rotations of line elements normal to the reference surface) and w3 is out-of-plane warping (stretching or contraction of
the normal line elements). Thus the formulation accounts for the contraction or extension of the normal through-the-thick-
ness. The covariant and contravariant base vectors in the undeformed state are, gi ¼ or̂

oxi
, gi ¼ 1

2
ffiffi
g
p eijkgj � gk, respectively, where

g is determinant of the metric tensor for the undeformed configuration, g = det (gi.gj) and eijk are components of the permu-
tation tensor. Similarly, the covariant base vectors for the deformed configuration are given by Gi ¼ oR̂

oxi
. The relation between

bi and Bj can be prescribed by an arbitrarily large rotation specified in terms of the matrix of direction cosines Cðx1; x2Þ so that
Bi ¼ Cijbj, Cij ¼ Bi:bj. In the present scheme, all possible deformations (large displacements and rotations) are allowed and
the corresponding Green strain (C) whose Lagrangian components (Crisfield, 2000) are

Cij ¼
1
2
ðFkiFkj � IijÞ; ð3Þ

where Fij are mixed bases components of the deformation gradient tensor (DGT), given by Fij = Bi.Gkgk.bj and Iij are elements
of the 3 � 3 identity matrix.
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