
Author's Accepted Manuscript

Physics Elements of an Algorithm for Brachytherapy Dose Calculation in Homogeneous Media for ¹⁹²*Ir* Source

Eshraq Ababneh, Saed Dababneh, Shada Wadi-Ramahi, Jamal Sharaf

www.elsevier.com/locate/radphyschem

PII: S0969-806X(18)30183-X

DOI: https://doi.org/10.1016/j.radphyschem.2018.04.004

Reference: RPC7811

To appear in: Radiation Physics and Chemistry

Received date: 3 March 2018 Accepted date: 2 April 2018

Cite this article as: Eshraq Ababneh, Saed Dababneh, Shada Wadi-Ramahi and Jamal Sharaf, Physics Elements of an Algorithm for Brachytherapy Dose Calculation in Homogeneous Media for ¹⁹²Ir Source, *Radiation Physics and Chemistry*, https://doi.org/10.1016/j.radphyschem.2018.04.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Physics Elements of an Algorithm for Brachytherapy Dose Calculation in Homogeneous Media for ^{192}Ir Source

Eshraq Ababneh^a, Saed Dababneh^{a,*}, Shada Wadi-Ramahi^b, Jamal Sharaf^c

^aDepartment of Physics, Faculty of Science, Al-Balqa Applied University, P.O. Box 2587, Amman 11941, Jordan.

^cDepartment of Physics, The University of Jordan, Amman, Jordan.

Abstract

Unlike for external beam treatment, Model Based Dose Calculation Algorithms for Brachytherapy are still under development, and have been recently encouraged by the American Association of Physicists in Medicine. This delay is at least partially caused by the extreme complications associated with the multidimensional considerations underlying Brachytherapy dose calculations. These algorithms require detailed mathematical description, based on extensive radiation physics considerations, of the spatial and angular distribution of the points where the decay photon first interacts in matter, called TERMA points, along with the functions describing the radial and angular dose spread around each TERMA point, called Kernel. This work contributes to this global effort by providing these functions for the individual photon lines in the decay of the exactly modeled Nucletron microSelectron v_3 ¹⁹² Ir source. The underlying physics of all photon and electron interaction mechanisms has been extensively considered. Furthermore, the effect of the absorbing media has been also investigated. Ultimately, three-dimensional integration of dose Kernel contribution at a specified position, running all over TERMA points in the irradiated volume, has been conducted to generate the dose at that specific location. This methodology is much less time, data storage, and CPU consuming compared to repeating

^bBiomedical Physics Department, King Faisal Specialist Hospital and Research Center, MBC03, P.O. Box 3354, Riyadh 11211, Saudi Arabia.

^{*}Corresponding author: Tel. +962-79-5606613

Email address: dababneh@bau.edu.jo (Saed Dababneh)

Download English Version:

https://daneshyari.com/en/article/8251320

Download Persian Version:

https://daneshyari.com/article/8251320

Daneshyari.com