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a b s t r a c t

We study the homogeneous turbulence in the presence of a constant average velocity
gradient in an infinite fluid domain, with a novel finite-scale Lyapunov analysis, presented
in a previous work dealing with the homogeneous isotropic turbulence.

Here, the energy spectrum is studied introducing the spherical averaged pair correlation
function, whereas the anisotropy caused by the velocity gradient is analyzed using the
equation of the two points velocity distribution function which is determined through
the Liouville theorem. As a result, we obtain the evolution equation of this velocity corre-
lation function which is shown to be valid also when the fluid motion is referred with
respect to a rotating reference frame. This equation tends to the classical von Kármán–
Howarth equation when the average velocity gradient vanishes.

We show that, the steady energy spectrum, instead of following the Kolmogorov law j�5/3,
varies as j�2. Accordingly, the structure function of the longitudinal velocity difference
hDun

r i � rfn exhibits the anomalous scaling fn � n/2, and the integral scales of the correlation
function are much smaller than those of the isotropic turbulence.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Although the Kolmogorov law E(j) � k�5/3 represents the main result of the isotropic turbulence, there are many exper-
imental evidences and theoretical arguments indicating that this is not the only spectrum observed in the fully developed
turbulence of incompressible fluids (Baroud, Plapp, She, & Swinney, 2002; Brissaud, Frisch, Leorat, Lessieur, & Mazure,
1973; Gordienko & Moiseev, 2001; Moffat, 1978).

For example, in Brissaud et al. (1973) and Moffat (1978), it is shown through the dimensional analysis, that the energy
spectrum in the presence of an average velocity gradient @U/@y can follow the law �k�7/3 in the inertial subrange. This is
a particular result arising from the assumption that the energy spectrum is linear in @U/@y. More in general, assuming that
the energy spectrum is proportional to (@U/@y)b with b > 0, the Buckingham theorem states that E(j) � j�5/3 � 2/3b, and
different scaling exponent are possible.

Gordienko and Moiseev (2001) studied the forced driving turbulence, where the forcing term can have various origins.
The authors remarked that there are two dimensionless parameters, characterizing the forcing term, which influence the
shape of the energy spectrum and are responsible for the anomalous spectra. They showed that, in a certain interval of
variation of one of these parameters, the spectrum follows the Kolmogorov law, whereas for an opportune choice of it,
the spectrum behaves like j�2 in the inertial subrange.

These different scaling are caused by the shear rate which leads to the development of coherent fluid structures. These are
streaky structures, due to the stretching of the vortex lines, which exhibit the maximum dimension along the stream
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direction (Lee, Kim, & Moin, 1990). In Lee et al. (1990), the authors remark that these streaky structures influence the span-
wise correlation of streamwise velocity components, being a non monotonic function which becomes negative at high values
of the spanwise distances.

Further, in Baroud et al. (2002), the authors experimentally analyzed the statistics of the longitudinal velocity difference
Dur in a closed cylindric tank which rotates around its symmetry axis at a given spin rate. The turbulence is generated by
pumping the flow in the tank through two concentric rings of 120 holes each, placed at the bottom of the tank, where
the source ring is the internal one. This generates an average radial flow that, combined with the spin rate, determines a
Coriolis force whose magnitude varies with the distance from the rotation axis. As a consequence, a counter rotating flow
and an average velocity gradient with respect to the tank frame is observed (Baroud et al., 2002). The authors found that
Dur presents the anomalous scaling hDun

r i � rfn with fn ’ n/2, in contrast with the Kolmogorov law (fn ’ n/3), and that
E(j) � j�2.

The present work studies the homogeneous turbulence in an infinite fluid domain in the presence of an average velocity
gradientrx U, using the finite-scale Lyapunov analysis, proposed by de Divitiis (2010), and de Divitiis (2011) for studying the
homogeneous isotropic turbulence.

In the first section, we define the spherical part of the velocity correlation tensor Rij, and we derive the evolution equation
for Rii from the Navier–Stokes equation with rxU – 0.

To study the effect ofrxU on the anisotropy and on Rij, the evolution equation for the pair distribution function is derived
from the Liouville theorem, assuming that the statistical equilibrium corresponds to the condition of isotropic turbulence
when the kinetic energy rate is equal to zero. From this equation, the steady velocity correlation tensor is expressed in func-
tion of the average velocity gradient and of the maximal finite-scale Lyapunov exponent and, in particular, the Boussinesq
closure for the Reynolds stress is obtained.

Finally, the equation for the spherical averaged longitudinal correlation function is determined, whose solutions depend
on the average velocity gradient. Moreover, we show that this equation is still valid when the fluid motion is refereed with
respect to a non-inertial rotating frame of reference. The steady solutions of this equation are numerically calculated for dif-
ferent Taylor-Scale Reynolds number and several results are presented. We found that E(j) � j�2 in the inertial subrange,
thus the statistical moments hDun

r i � rfn exhibit the anomalous scaling fn � n/2, whereas the integral scales of the longitu-
dinal correlation function are much lesser than those of the isotropic turbulence. In the case of homogeneous turbulence
in the presence of a steady shear rate, the spanwise correlation function of the streamwise velocity component is also
calculated.

2. Analysis

This section analyzes the homogeneous turbulence with an uniform average velocity gradient rxU.
The fluid velocity, measured in the reference frame R, is v = U + u, where U � (Ux,Uy,Uz) and u � (ux,uy,uz) are, average

and fluctuating velocity, respectively. The velocity correlation tensor is defined as Rij ¼ huiu0ji, being ui and u0j the velocity
components of u calculated at x and x0 = x + r, where the brackets denote the average on the statistical ensemble of u and
u0, and r is the separation distance (Kármán & Howarth, 1938; Batchelor, 1953).

In order to determine the evolution equation of Rij, we start from the Navier–Stokes equations, written for the fluctuating
velocity (Batchelor, 1953), in the points x and x0
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where p is the fluctuating pressure and U0 is

U0 ¼ UþrxU r ð2Þ

being U and rxU assigned quantities. The repeated index indicates the summation with respect the same index. The evolu-
tion equation of Rij is determined by multiplying first and second equation by u0j and ui, respectively, summing the so
obtained equations, and calculating the average on the statistical ensemble (Batchelor, 1953):
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where @h � � � i/@xi � � @h � � � i/@ri and @h� � �i=@x0i � @h� � �i=@ri. Making the trace of Eq. (3), we obtain the following scalar
equation
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