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the study of seismic waves in an earthquake, supposing that the bottom land is modeled as
having a microstructure. To construct explicit expressions for the possible surface waves
under consideration, we use the Stroh formalism. These solutions are further used to study
the Rayleigh waves and to give the explicit equation for the Rayleigh surface wave speed
(secular equation). Numerical calculations and graphics corresponding to the analytical
solution are given for aluminium-epoxy composite.
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1. Introduction

This paper is concerned with the seismic waves propagation in Cosserat elastic materials. The theory of elastic materials
with microstructure goes back to the book of Cosserat and Cosserat (1909). After that, the theory of materials with micro-
structure became a subject of intensive study in literature (see, for example, Eringen & Suhubi, 1964a, 1964b; Mindlin, 1963,
1964; Toupin, 1962). Eringen (1966) introduced the concept of micropolar continua, which is similar with Cosserat continua;
additionally he introduced a conservation law for the microinertia tensor, as a special case of micromorphic continua
(Eringen & Suhubi, 1964a, 1964b).

It is well-known that the response of the material to external stimuli depends heavily on the motions of its inner struc-
ture. Classical elasticity ignores this effect by ascribing only translation degrees of freedom to material points of the body. In
the micropolar continuum theory, the rotational degrees of freedom play a central role. Thus, we have six degrees of free-
dom, instead of the three ones considered in classical elasticity. Moreover, in micropolar theories, in order to characterize
the force applied on the surface element, two tensors are used: an asymmetric stress tensor and a couple stress tensor. Crys-
tals, composites, polymers, suspensions, blood, grid and multibar systems can be considered as examples of media with
microstructure. In fact, nature abounds with many substances which point out the necessity for the considering of micro-
motions into the mechanical studies. A review of the historical developments as well as references to various contributions
on the subject may be found in the monographs by Truesdell and Noll (1965), Nowacki (1986), Eringen (1999) and lesan
(2004).

The classical theory of elasticity does not explain certain discrepancies that occur in the case of problems involving elastic
vibrations of high frequency and short wavelength, that is, vibrations generated by ultrasonic waves. According to the book
of Eringen (1999), if the ratio of the characteristic length associated with the external stimuli and the internal characteristic
length is in the neighborhood of 1, then the response of constituent subcontinua becomes important. This is the reason why

* Corresponding author at: “Octav Mayer” Mathematics Institute, The Romanian Academy, lasi Branch, Blvd. Carol I, No. 8, 700505 lasi, Romania.
E-mail addresses: schirita@uaic.ro (S. Chirita), ghiba_dumitrel@yahoo.com (I.-D. Ghiba).

0020-7225/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijengsci.2011.10.011


http://dx.doi.org/10.1016/j.ijengsci.2011.10.011
mailto:schirita@uaic.ro
mailto:ghiba_dumitrel@yahoo.com
http://dx.doi.org/10.1016/j.ijengsci.2011.10.011
http://www.sciencedirect.com/science/journal/00207225
http://www.elsevier.com/locate/ijengsci

118 S. Chiritd, 1.-D. Ghiba/ International Journal of Engineering Science 51 (2012) 117-127

Table 1

Surface wave speed.
k v N k v Ve
0.001 0.870495 0.923901 1 0.873217 0.925689
0.01 0.870519 0.923914 2 0.873242 0.925707
0.05 0.870979 0.92419 3 0.873246 0.92571
0.1 0.871755 0.924683 4 0.87324783 0.925711
0.2 0.872616 0.925264 5 0.87324857 0.92571154
0.3 0.872926 0.925481 6 0.87324898 0.92571183
0.4 0.873058 0.925575 7 0.87324922 0.92571201
0.5 0.873124 0.925622 8 0.87324968 0.92571234
0.6 0.873161 0.925649 9 0.87324949 0.92571220
0.7 0.873184 0.925665 10 0.87324957 0.92571226
0.8 0.873199 0.925676 50 0.87324988 0.92571249
0.9 0.87321 0.925684 10° > k > 10? 0.87324990 0.92571249

the short wavelength behavior departs drastically from experimental observations in classical elasticity. The micropolar ef-
fects become important in high-frequency and short wave-length regions of waves.

We have to outline that Kulesh, Matveenko and Shardakov (2005, 2006) have studied the propagation of elastic surface
waves in Cosserat medium and have sought the solutions in the form of wave packets determined by an arbitrary-shape Fou-
rier spectrum. So, the solution is given in the form of Fourier integrals. In some previous papers (see, for example, (Eringen,
1999) and the papers cited therein) the authors have considered some lower bounds for the frequency and also for the wave-
number; also, the attenuating coefficient and some conditions upon wave speed and upon wave-number are not explicitly
given in the previous papers (see (Erofeyev, 2003; Kulesh, Matveenko, & Shardakov, 2006)). These are consequences of the
methods used in their approaches. For the gradient type approach of microstructured solids the propagation of surface waves
was studied by (Georgiadis & Velgaki, 2003; Georgiadis, Vardoulakis, & Velgaki, 2004). Moreover, the class for which the gen-
eralized form of the secular equation has an admissible solution does not established yet.

Our main purpose is to construct new solutions for the waves propagation problem in a micropolar half space. In fact, we
use the Stroh formalism (Destrade, 2007; Stroh, 1962) in order to obtain explicit expressions for the possible surface waves
in concern and, moreover, we obtain a sextic equation with real coefficients for the propagation condition. Further, we give
explicit expressions of the attenuating coefficients and explicit conditions upon wave speed. After that we give the exact
expressions of three linear independent amplitude vectors. These amplitudes are characteristic for the coupled case of the
elastic and microstructure effects. In the last part of the paper, these inhomogeneous plane wave solutions are used to study
the Rayleigh surface waves (Rayleigh, 1885) in an isotropic Cosserat elastic half space. An explicit equation is also established
for the Rayleigh wave speed (secular equation). This equation has a simple form, it is not a generalization of the secular equa-
tion from the classical elasticity and it is a special one valid for the genuine micropolar model. Moreover, by comparing it
with other generalized forms of the secular equation (Eringen, 1999; Erofeyev, 2003; Koebke & Weitsman, 1971; Kulesh
et al., 2006) (see, also, (Chirita & Ghiba, 2010)) this equation does not involve the complex form of the attenuating coeffi-
cients, and for this reason we consider that it has to be most appropriate for considerations in further studies. For a specified
class of materials we prove that this equation always has at least one admissible solution. The conditions imposed upon the
constitutive quantities are in concordance with those expressed by the positive definiteness of the internal energy and in-
clude the materials considered by Gauthier and Jahsman (1975) and Gauthier (1982) (see also (Eringen, 1999), Sections
5.11-5.13) in their experiments. In fact, from the illustrative graphics which we give within this paper one can see that it
is possible to have only one admissible wave speed for each material. To obtain such solutions we do not impose any lower
bounds to the frequency or to the wave-number. Moreover, the Rayleigh wave solution is also valid for a complementary
class of materials with respect to those previously considered in the literature.

We have to notice that the Rayleigh wave problem in the classical theory of linear elasticity has been a subject of great
interest in literature on the field (see, for example, the article by Hayes and Rivlin (1962) and the monographs by Jeffreys
(1952) and Achenbach (1973)). Important contributions on this argument have been reported recently by Rahman and
Barber (1995), Nkemzi (1997, 2008), Malischewsky (2000), Vinh and Ogden (2004), Li (2006), Destrade (2007), Vinh and
Malischewsky (2007, 2008) and Ting (20114, 2011b).

2. Basic equations of the Cosserat elastic model

Throughout this section B is a bounded regular region of three-dimensional Euclidean space. We let 9B denote the bound-
ary on B, and designate by n the outward unit normal on 9B. We assume that the body occupying B is a linearly Cosserat
elastic material. The body is referred to a fixed system of rectangular Cartesian axes Ox; (i = 1,2,3). Throughout this paper
Latin indices have the range 1, 2, 3, Greek indices have the range 1, 2 and the usual summation convention is employed.
We use a subscript preceded by a comma for partial differentiation with respect to the corresponding coordinate and a
superposed dot represents the derivative with respect to time variable.
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