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A B S T R A C T

Model–data fusion is defined as matching model prediction and observations by varying model

parameters or states using statistical estimation. In this paper, we review the history of applications of

various model–data fusion techniques in studies of terrestrial carbon fluxes in two approaches: top-

down approaches that use measurements of global CO2 concentration and sometimes other atmospheric

constituents to infer carbon fluxes from the land surface, and bottom-up approaches that estimate

carbon fluxes using process-based models. We consider applications of model–data fusion in flux

estimation, parameter estimation, model error analysis, experimental design and forecasting. Significant

progress has been made by systematically studying the discrepancies between the predictions by

different models and observations. As a result, some major controversies in global carbon cycle studies

have been resolved, robust estimates of continental and global carbon fluxes over the last two decades

have been obtained, and major deficiencies in the atmospheric models for tracer transport have been

identified. In the bottom-up approaches, various optimization techniques have been used for a range of

process-based models. Model–data fusion techniques have been successfully used to improve model

predictions, and quantify the information content of carbon flux measurements and identify what other

measurements are needed to further constrain model predictions. However, we found that very few

studies in both top-down and bottom-up approaches have quantified the errors in the observations,

model parameters and model structure systematically and consistently. We therefore suggest that

future research will focus on developing an integrated Bayesian framework to study both model and

measurement errors systematically.
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1. Introduction

Feedback between the terrestrial carbon cycle and climate
change has been shown to be positive at the global scale, and has
significant impact on the predictions of climate change in the
future, but the magnitude of this positive feedback and its regional
variation remains quite uncertain (Friedlingstein et al., 2006). To
improve the understanding of this positive feedback, we need to
constrain our model simulations and predictions using biophysical
and atmospheric observations available at different time and
spatial scales. Two approaches have traditionally been used to
estimate carbon fluxes. The top-down approach uses the observed
surface atmospheric CO2 concentration, other atmospheric con-
stituents such as 13CO2 or O2/N2, and an atmospheric transport
model to infer surface CO2 sinks and sources in time and space
(Ciais et al., 1995; Rayner et al., 1999; Bousquet et al., 2000; Gurney
et al., 2002). The bottom-up approach uses a process-based model
developed using observations at smaller scales to estimate the
exchange of carbon between the land biosphere and the atmo-
sphere at larger scale (Cramer et al., 1999). The process-based
models can be quite complex, including detailed descriptions of
physical, chemical and biological processes at leaf to ecosystem
scales. Improving the representation of these processes is essential
for using process-based models in a predictive mode.

Over time, there has been increasing sophistication of both the
models and the techniques for integrating model and data in these
studies (Keeling et al., 1989; Tans et al., 1990; Enting et al., 1995;
Enting, 2002; Rödenbeck et al., 2003). Model and data integration,
also called model–data fusion or model–data synthesis, is defined
as combining models and observations by varying some properties
of the model, to give the optimal combination of both (Raupach
et al., 2005). Model–data fusion therefore encompasses both
parameter estimation and data assimilation. Mathieu and O’Neill
(2008) describe the combination of model and data in data
assimilation as ‘‘a carefully constructed procedure that brings to
bear all our knowledge of the system and measurement process as
well as the known inaccuracies in (i) measurements (e.g.
instrumental error), (ii) governing equations of the system (e.g.
parameterisations error of sub-grid scale processes), and (iii)
numerical representation of these equations (i.e. discretization and
computational errors)’’. Early examples combining models and
data are not as all-encompassing as in this description, but are
precursors to such an approach. The description given by Mathieu
and O’Neill (2008) can be seen as the goal for model–data fusion.
Here we review the application of model–data fusion techniques,
and their precursors, in top-down and bottom-up approaches to
estimate terrestrial carbon fluxes. As we will see, the top-down and
bottom-up approaches address the same problem by different
routes, but many features of the techniques used to solve them are
common, so a combined review is appropriate.

In the top-down approach, early studies of CO2 flux inversions
used ad hoc scaling of flux patterns to fit available CO2

concentration data (Keeling et al., 1989; Tans et al., 1990). Enting
et al. (1995) introduced a systematic method, known as ‘Bayesian
synthesis inversion’, for estimating fluxes and, importantly, the
uncertainties in these fluxes, which was further developed by

Rayner et al. (1999) for a time dependent Bayesian synthesis
inversion. Since then there have been numerous flux inversions,
some considering only CO2 observations (e.g. Bousquet et al., 2000;
Rödenbeck et al., 2003; Peylin et al., 2005), some considering
d13CO2 in addition to CO2 to help distinguish fluxes to and from the
land and oceans (Rayner et al., 2008). Early studies were reviewed
by Enting (2002) and much subsequent work has been undertaken
within the TransCom intercomparison community (e.g. Gurney
et al., 2003; Baker et al., 2006a). Apart from the matrix inversion
approach used in early Bayesian synthesis inversion studies, a
range of other computational techniques have been applied to flux
inversions, including sequential estimation with the Kalman filter
(Baker, 2001; Bruhwiler et al., 2005; Peters et al., 2005) and
variational data assimilation (Baker et al., 2006b).

In the bottom-up approach, precursors to model–data fusion in
studies of carbon exchange between the atmosphere and the land
biosphere by plant scientists before the 1970s were largely limited
to fitting the response functions of photosynthesis or respiration to
environmental variables, such as light, temperature, atmospheric
vapor pressure or soil moisture using data collected from
controlled environments (Harley et al., 1992). Questions were
raised how useful those complex models really were if many of
their parameters and underlying assumptions cannot be verified
(Finnigan and Raupach, 1988). Because of the complex response of
processes to multiple environmental variables, traditional meth-
ods of curve fitting became quite limited for extracting information
from the data and therefore for improving the accuracies of model
predictions.

Technology advances in the late 1980s made the continuous
measurement of carbon fluxes in the field possible. As a result, the
predictions of process-based models can be compared directly
with field measurements over multiple years at different sites.
Some early examples of parameter estimation in terrestrial carbon
models using these measurements were Wang et al. (2001) and
White and Luo (2002) using gradient-based parameter estimation
methods. Other methods were later used for estimating para-
meters, such as Kalman filter techniques (Williams et al., 2005;
Gove and Hollinger, 2006); Markov Chain Monte Carlo sampling
method (Braswell et al., 2005; Richardson and Hollinger, 2005),
Generalized Likelihood Uncertainty Estimation (Mo and Beven,
2004) and so on.

The top-down approach for estimating CO2 fluxes has a number
of limitations: the inversion is poorly constrained and is diagnostic,
therefore does not readily allow for prediction. Furthermore,
including other kinds of observations is difficult in synthesis
inversions except as prior constraints on fluxes (formally this is not
a limitation, but in practice calculations have been restricted to
linear relations with Gaussian statistics). Much more information
can be readily used in the bottom-up approaches using process
models, such as biomass inventory, eddy fluxes and remote
sensing. However, the bottom-up approach is generally used to
calibrate models at individual sites, and it is difficult to know how
representative these sites are, and therefore how accurate fluxes
are when integrated over larger regions. A series of studies
combining the top-down and bottom-up approaches, known as the
Carbon Cycle Data Assimilation System (CCDAS), addresses these
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