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a b s t r a c t

We study waves in a viscoelastic rod of finite length. Viscoelastic material is described by a
constitutive equation of fractional distributed-order type with the special choice of weight
functions. Prescribing boundary conditions on displacement, we obtain displacement and
stress in a stress relaxation test. We use the Laplace transformation method in the time
domain as a tool for solving system of differential and integro-differential equations, that
describe the motion of the rod.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional derivatives have been used in describing physical phenomena such as viscoelasticity, diffusion and wave phe-
nomena. For the detailed account of applications of fractional calculus in viscoelasticity (see Mainardi, 2010; Rossikhin,
2010; Rossikhin & Shitikova, 2010). There are two approaches in formulating differential equations with fractional deriva-
tives in physics and mechanics. In the first approach classical ‘‘integer order’’ differential equations of a process are modified
by introducing fractional derivatives instead of integer order ones (see Kilbas, Srivastava, & Trujillo, 2006; Mainardi, 1997;
Podlubny, 1999). In the second approach one uses variational principles such as the Hamilton principle as a starting point for
deriving equations of a process, where a modification of the classical case is achieved by replacing some (or all) integer order
derivatives in Lagrangian density by fractional derivatives of certain kind. Then the resulting Euler–Lagrange equations are
equations of a process and they contain both left and right fractional derivatives (see Agraval, 2002; Atanackovic, konjik, &
Pilipovic, 2008; Atanackovic & Stankovic, 2007).

In this paper we generalize classical wave equation for one-dimensional elastic body by following the first approach. Re-
call the classical setting. Consider the equation of motion

@

@x
rðx; tÞ ¼ q

@2

@t2 uðx; tÞ; x 2 ½0; L�; t > 0; ð1Þ

where q, r and u denote density, stress and displacement of a material at a point positioned at x and at a time t, respectively.
It is coupled with the Hooke Law

rðx; tÞ ¼ Eeðx; tÞ; x 2 ½0; L�; t > 0; ð2Þ
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where E is a modulus of elasticity and e is a strain measure, defined by

eðx; tÞ ¼ @

@x
uðx; tÞ; x 2 ½0; L�; t > 0: ð3Þ

Combining (1)–(3), the classical wave equation is obtained as

@2

@x2 uðx; tÞ ¼ q
E
@2

@t2 uðx; tÞ; x 2 ½0; L�; t > 0:

We propose the generalization of a constitutive equation (2) by replacing it with a constitutive equation which corre-
sponds to a generalized viscoelastic body:Z 1

0
/1ðaÞ0Da

t rðx; tÞda ¼ E
Z 1

0
/2ðaÞ0Da

t eðx; tÞda; x 2 ½0; L�; t > 0; ð4Þ

where E is a generalized Young modulus (positive constant having dimension of stress), /1 and /2 are given functions or dis-
tributions and 0Da

t y is the left Riemann–Liouville fractional derivative of a function y 2 AC([0,T]), for every T > 0, of the order
a 2 [0,1), defined as

0Da
t yðtÞ :¼ 1

Cð1� aÞ
d
dt

Z t

0

yðsÞ
ðt � sÞa

ds; t > 0;

where C is the Euler gamma function. Recall, AC([0,T]) denotes the space of absolutely continuous functions (for a detailed
account on fractional calculus, see Samko, Kilbas, and Marichev (1993)).

In the case when /1 and /2 are distributions, we assume that /1 and /2 are compactly supported by
½0;1� /1;/2 2 E0ðRÞ; supp/1; supp/2 � ½0;1�ð Þ. In this case integrals in (4) are asZ

supp/
/ðaÞ0Da

t hðtÞda;uðtÞ
� �

:¼ /ðaÞ; 0Da
t hðtÞ;uðtÞ

� �� �
; u 2 SðRÞ:

For details, see Atanackovic, Oparnica, and Pilipovic (2009). Recall, S0þðRÞ denotes the space of tempered distributions sup-
ported by [0,1) and hh(t),u(t)idenotes the action of a distribution h 2 S0þðRÞon a test functionu 2 SðRÞ (see Vladimirov, 1984).

In (4), /1 and /2 denote constitutive functions or distributions that are determined experimentally (see Rogers, 1983;
Schiessel, Friedrich, & Blumen, 2000). The constitutive equations of type (4) were used earlier in Atanackovic (2002b), Ata-
nackovic, Pilipovic, and Zorica (2009a), Atanackovic, Pilipovic, and Zorica (2009b), Hartley and Lorenzo (2003). There are
number of forms that /1 and /2 can take (see e.g. Hartley & Lorenzo, 2003). In the sequel we assume that

/1ðaÞ :¼ aa; /2ðaÞ :¼ ba
; a 2 ð0;1Þ; a 6 b: ð5Þ

The restriction a 6 b follows from the Second Law of Thermodynamics (see Atanackovic, 2002a, 2003). If a = b, then (4) re-
duces to the Hooke Law. The choice of /1 and /2 in the form (5) is the simplest choice guaranteeing dimensional homoge-
neity. Note that with /1ðlÞ :¼ dðlÞ þ sa

e dðl� aÞ and /2ðlÞ :¼ E1sb
edðl� bÞ (d denotes the Dirac distribution) we obtain

rþ sa
e 0Da

t r ¼ E1sb
e 0Db

t e; ð6Þ

while with /1ðlÞ :¼ dðlÞ þ sa
e dðl� aÞ and /2ðlÞ :¼ E0 dðlÞ þ sa

rdðl� aÞ þ sb
rdðl� bÞ

� �
we obtain

rþ sa
e 0Da

t r ¼ E0 1þ sa
r0Da

t þ sb
r0Db

t

� 	
e: ð7Þ

Recall, system (1), (3) and (6), respectively, system (1), (3) and (7), was treated in Rossikhin and Shitikova (2001), respec-
tively, in Rossikhin and Shitikova (2001). Similarly, the constitutive equations used in Rossikhin and Shitikova (2004) could
be obtained from (4) by choosing /1 and /2 to be the linear combination of the Dirac delta distributions. Also note that the
distributed order dissipation of type (4) was also used in the context of one degree of freedom mechanical systems in Ata-
nackovic, Budincevic, and Pilipovic (2005) and Atanackovic and Pilipovic (2005).

Our aim is to find functions u and r, locally integrable on R and equal to zero for t < 0, so that these functions satisfy (1), (3)
and (4), for x 2 [0,L] and t > 0, as well as the appropriate initial and boundary conditions. For this, we will introduce dimension-
less quantities and transform the system (1), (3) and (4), subject to (8) and (9), into the system (10), subject to (11) and (12).

The paper is organized as follows. In Section 2 we introduce dimensionless quantities, proceed by formal calculation and
by the use of the Laplace transformation we obtain solutions to (1), (3) and (4) in the convolution form. We impose initial
conditions as well as boundary conditions to (1), (3) and (4). Boundary conditions describe a rod that is fixed at one of its
ends, while the other end is subject to a prescribed displacement � (this is the case of stress relaxation if � = �0H, with
H being the Heaviside function). Section 3 is devoted to the calculation of the inverse Laplace transformation, which leads
to the explicit form of a solution. More precisely, we investigate some properties of functions in order to be able to apply
the Cauchy residues theorem, which is used to calculate the inverse Laplace transformation. We obtain displacement u
and stress r for the boundary condition � = �0H in Section 3.1.1, as well as for � = �0H + F, where F is an appropriate func-
tion supported by [0,1), in Section 3.1.2. We conclude that solutions are locally integrable functions supported by [0,1).
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