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a b s t r a c t 

A three factor variance model introduced by Gatheral in 2008, called the double mean reverting (DMR) 

model, is well-known to reflect the empirical dynamics of the variance and prices of options on both SPX 

and VIX consistently with the market. One drawback of the DMR model is that calibration may not be 

easy as no closed form solution for European options exists, not like the Heston model. In this paper, we 

still use the double mean reverting nature to extend the Heston model and study the pricing of variance 

swaps given by simple returns in discrete sampling times. The constant mean level of Heston’s stochastic 

volatility is extended to a slowly varying process which is specified in two different ways in terms of the 

Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes. So, two types of double mean reversion 

are considered and the corresponding models are called the double mean reverting Heston-OU model 

and the double mean reverting Heston-CIR models. We solve Riccati type nonlinear equations and derive 

closed form exact solutions or closed form approximations of the fair strike prices of the variance swaps 

depending on the correlation structure of the three factors. We verify the accuracy of our analytic solu- 

tions by comparing with values computed by Monte Carlo simulation. The impact of the double mean 

reverting formulation on the fair strike prices of the variance swaps are also scrutinized in the paper. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since Chicago Board Option Exchange (CBOE) volatility index 

(VIX) was introduced in 1993, volatility began to be considered 

as an asset. Trading volume of volatility and variance derivatives 

has increased rapidly in real market and also a variety of volatil- 

ity derivatives have been produced. With increasing volatility mar- 

ket, volatility and variance swaps, forward contracts on realized 

volatility and variance, take possession of the volatility market as 

a tool for hedging the volatility exposure or trading the spread be- 

tween realized and implied volatility. In theoretical aspect, vari- 

ance swaps have several advantages over volatility swaps. Above 

all, variance swaps have simpler structure than volatility swaps 

because variance is a square of standard deviation. The payoff of 

variance swaps increases as volatility rises, which makes benefi- 

cial when the volatility is high [1] . Also, it is worth while to note 

that Demeterfi et al. [2] and Carr and Madan [3] have shown that 

continuous sampling variance swaps can be replicated by a static 

portfolio of European options with an equity. 

To trade variance swaps, we need the fair strike price calcu- 

lated under no-arbitrage condition in exchange for realized vari- 
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ance. Heston model [4] that contains the volatility process follow- 

ing the CIR process [5] is used in many studies to derive price of 

various financial derivatives because of its mathematical advantage 

[6–9] . In the field of pricing volatility based derivatives, one can 

find many studies attempting to derive the strike price of vari- 

ance swaps under the Heston model. For example, Zhu and Lian 

[10] obtain an analytic formula for variance swaps under the He- 

ston model by using a partial differential equation and Fourier 

transform method. Swishchuk [11] prices variance and volatility 

swaps under the Heston model by using a probabilistic approach. 

Zheng and Kwok [12] derive a closed form solution of general- 

ized variance swaps under the Heston model. Cao et al. [13] extend 

the study of variance swaps to the case of the Heston model with 

stochastic interest rates. Also, there are studies of variance swaps 

under other stochastic volatility models. For example, Bernard and 

Cui [14] price variance swaps under Hull-White [15] and Schobel- 

Zhu [16] models apart from the Heston model using asymptotic 

method. Little and Pant [17] use the finite difference method to 

study variance swaps under a general stochastic volatility model. 

The studies of variance swaps quoted above are based on one- 

factor stochastic volatility model. In the context of option pricing, 

it is well-known that one factor stochastic volatility model has a 

major drawback when it comes to fitting an arbitrage-free implied 

volatility surface to market data, especially at short time to ma- 
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turities. To overcome this inadequacy, it is usually required to add 

additional parameters, which allows the model to be more flexible. 

This can be accomplished by allowing the parameters to be time 

dependent or enriching the volatility process. Christoffersen et al. 

[18] specify a two-factor structure for the volatility and suggest 

the so-called double Heston model. Also, we note that Pun et al. 

[19] adopt a multi-factor stochastic volatility model with jumps to 

price variance swaps. Swishchuk [20] studies variance swaps un- 

der assorted one-factor and multi-factor models with delay. There 

is a three factor model of Gatheral [21] , called the double mean re- 

verting (DMR) model or the Gatheral model, as an interesting ex- 

tension of the Heston model. This model has a strong advantage 

that it can be successfully calibrated to both VIX options and SPX 

options simultaneously. One drawback of this model is, however, 

that no analytic solution for variance swaps and European options 

exists and thus calibration may be slow. 

To obtain an analytic solution for variance swaps under a three 

factor stochastic volatility model, we incorporate the double mean 

reverting nature into the Heston model and specify the DMR 

model to a certain degree using both OU [22] and CIR processes for 

the stochastic mean level of Heston’s volatility. We call the corre- 

sponding double mean reverting models the double mean revert- 

ing Heston-OU model and the double mean reverting Heston-CIR 

model, respectively. We first obtain the characteristic function of 

each model and then derive analytic solutions for the fair strike 

prices of variance swaps. The analytic solutions are given by ex- 

act or approximate ones depending on the correlation structure of 

the three factors. Accuracy of our analytic solutions is tested using 

Monte Carlo simulation. The impact of our type of double mean 

reverting formulation on the variance swap price is given with nu- 

merical experiment. 

The rest of the paper is structured as follows. In Section 2 , we 

introduce double mean reverting dynamic structures of an under- 

lying asset. In Sections 3 and 4 , we obtain (exact and approximate) 

analytic solutions for the fair strike price of a variance swap un- 

der two different specified models by using generalized character- 

istic function. In Section 5 , we perform a numerical experiment to 

test validity of our solutions using Euler scheme Monte Carlo (MC) 

simulation and investigate the price sensitivity with respect to the 

model parameters. In Appendix, we show technical calculations in- 

cluding how to solve some ordinary differential equations (ODEs) 

and Taylor approximations for expectation of some processes. 

2. Underlying dynamics 

The choice of variance dynamics is crucial in handling volatil- 

ity derivatives. We extend the Heston model by replacing the con- 

stant mean level of stochastic variance with a stochastic process. 

The new model is a specific form of the DMR model. 

2.1. The DMR model 

Using the underlying price S ( t ) and Brownian motions W i ( t ) ( i = 

1 , 2 , 3 ), the DMR model is given by 

dS(t) = 

√ 

ν(t) S(t ) dW 1 (t ) , 

dν(t) = κ(θ (t) − ν(t)) dt + σν(t ) γ1 dW 2 (t ) , 

dθ (t) = α(β − θ (t)) dt + ηθ(t ) γ2 dW 3 (t ) , 

where κ , σ , α, β , η, γ 1 and γ 2 are constants. This form of dynam- 

ics is beneficial in terms of matching with market data but arduous 

to derive analytic solution for financial derivatives. For the purpose 

of obtaining an analytic solution for the fair strike price of variance 

swaps, we specify the framework of the DMR model while still ex- 

tending the one-factor Heston model in the following way. 

dS(t) = μS(t) dt + 

√ 

ν(t) S(t) dW 1 (t) , 

dν(t) = κ(θ0 + θ (t) − ν(t)) dt + σ
√ 

ν(t) dW 2 (t) , 

dθ (t) = α(β − θ (t)) dt + η(t , θ (t )) dW 3 (t ) , 

(2.1) 

with d W 1 (t) d W 2 (t) = ρ1 d t, d W 1 (t) d W 3 (t) = ρ2 dt and 

d W 2 (t) d W 3 (t) = ρ3 dt under a market probability measure P , 

where ρ i is a constant with −1 ≤ ρi ≤ 1 for i = 1 , 2 , 3 and θ0 

denotes the minimum long-term mean level of variance. 

According to the Girsanov theorem [23] , there exists a risk- 

neutral probability measure Q equivalent to the market probability 

measure P under which (2.1) is transformed into 

dS(t) = rS(t) dt + 

√ 

ν(t) S(t) d ˆ W 1 (t) , 

dν(t) = (a 0 + a 1 θ (t) + a 2 ν(t)) dt + σ
√ 

ν(t) d ˆ W 2 (t) , 

dθ (t) = (b 0 + b 1 θ (t)) dt + η(t , θ (t )) d ˆ W 3 (t ) , 
(2.2) 

where a 0 = κθ0 , a 1 = κ, a 2 = −κ − λ1 , b 0 = αβ and b 1 = −α − λ2 

and 

ˆ W i (t) ( i = 1 , 2 , 3 ) are Brownian motions. Here, each λi ( i = 

1 , 2 ) denotes the premium of volatility risk as named in Heston’s 

paper [4] . 

To obtain a dynamic system with mutually independent Brow- 

nian motions, we apply the Cholesky decomposition [24] to (2.2) . 

Then system (2.2) is expressed as [ 

dS(t) /S(t) 
dν(t) 
dθ (t) 

] 

= 

[ 

r 
a 0 + a 1 θ (t) + a 2 ν(t) 

b 0 + b 1 θ (t) 

] 

dt + � × C ×
[ 

dW 

∗
1 (t) 

dW 

∗
2 (t) 

dW 

∗
3 (t) 

] 

, 

(2.3) 

where � and C are 

� = 

⎡ 

⎣ 

√ 

ν(t) 0 0 

0 σ
√ 

ν(t) 0 

0 0 η(t, θ (t)) 

⎤ 

⎦ , 

C = 

⎡ 

⎢ ⎢ ⎣ 

1 0 0 

ρ1 

√ 

1 − ρ2 
1 

0 

ρ2 
ρ3 −ρ1 ρ2 √ 

1 −ρ2 
1 

√ 

1 − ρ2 
2 

−
(

ρ3 −ρ1 ρ2 √ 

1 −ρ2 
1 

)2 

⎤ 

⎥ ⎥ ⎦ 

satisfying 

C C T = 

[ 

1 ρ1 ρ2 

ρ1 1 ρ3 

ρ2 ρ3 1 

] 

and W 

∗
1 (t) , W 

∗
2 (t) and W 

∗
3 (t) are mutually independent Brownian 

motions under the measure Q satisfying ⎡ 

⎣ 

d ˆ W 1 (t) 

d ˆ W 2 (t) 

d ˆ W 3 (t) 

⎤ 

⎦ = C ×
[ 

dW 

∗
1 (t) 

dW 

∗
2 (t) 

dW 

∗
3 (t) 

] 

. 

By substituting x (t) = log (S(t)) , system (2.3) becomes [ 

dx (t) 
dν(t) 
dθ (t) 

] 

= 

[ 

r − ν(t) / 2 

a 0 + a 1 θ (t) + a 2 ν(t) 
b 0 + b 1 θ (t) 

] 

dt + � × C ×
[ 

dW 

∗
1 (t) 

dW 

∗
2 (t) 

dW 

∗
3 (t) 

] 

. 

(2.4) 

To obtain an analytic solution for variance swaps, we choose 

two types of η( t, θ ( t )) in this paper. 
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