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a b s t r a c t 

This study covers an analytical approach to calculate positive invariant sets of dynamical systems. Using 

Lyapunov techniques and quantifier elimination methods, an automatic procedure for determining bounds 

in the state space as an enclosure of attractors is proposed. The available software tools permit an algo- 

rithmizable process, which normally requires a good insight into the systems dynamics and experience. 

As a result we get an estimation of the attractor, whose conservatism only results from the initial choice 

of the Lyapunov candidate function. The proposed approach is illustrated on the well-known Lorenz sys- 

tem. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A dynamical system may have an attractor which implies a 

neighborhood around the attractor on which all trajectories are 

bounded. Thus, it is interesting to ask if such a neighborhood can 

be described analytically. From a geometric point of view, this 

means we intend to find a subset of the state space with some spe- 

cial properties, which is also called finding a compact invariant set 

or calculating an enclosure of the attractor. A standard procedure 

for calculating such a bound is to employ positive Lyapunov-like 

functions. However, there are two major restrictions to employing 

Lyapunov-like functions. A first is that the algebraic form as well as 

the parameterization of the function offers a considerable degree 

of choice, which usually makes finding a suitable candidate a mat- 

ter of (mostly human) trail-and-error. A second is that calculating 

symbolic or numerical values of the bound on the Lyapunov-like 

candidate function that gives an estimate of the compact invariant 

set commonly requires human insight, experience, and frequently 
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substantial algebraic manipulations. The approach we present here 

aims at circumventing these problems by proposing an automatic 

and algorithmizable procedure. This is done using quantifier elim- 

ination (QE) methods. The term quantifier elimination covers sev- 

eral methods [1–3] to reformulate quantified formulas into a quan- 

tifier free equivalent. This idea has already been applied for stabil- 

ity analysis [4–7] , model verification [8] as well as controller de- 

sign [8–10] . 

The method we propose calculates an analytic expression of 

compact positive invariant sets. Moreover, if a dynamical system 

is dissipative and may consequently possess one (or even several) 

attractors, then a positive invariant set may contain at least one 

of them. However, attractors are invariant sets with additional re- 

quirements. They have to be compact, they are not dividable into 

two invariant, disjoint subsets and they need an attractive neigh- 

borhood. This consequently applies to chaotic attractors, which 

have a complicated geometry, and for which compact positive in- 

variant sets can provide an enclosure. Thus, calculating attractor 

enclosures by compact positive invariant sets is related to, but dif- 

fers in methodology and objective from computing analytic expres- 

sions of attractors themselves, as shown by calculating invariant 

measures and fractal dimension for the 2D Lorenz map [11,12] , or 

almost-invariant sets and invariant manifolds for the Lorenz sys- 

tem [13] . These differences in objective and methodology stem 
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from this paper using Lyapunov–like function for calculating at- 

tractor enclosures, while calculating attractor approximations has 

been shown by either using a geometric description of the dynam- 

ics by invariant manifolds or a probabilistic description of dynam- 

ics by transfer operators or almost-invariants sets [11–15] . 

Although our method is generally applicable to dynamical sys- 

tems with polynomial description, we specifically apply it to the 

Lorenz system to have a comparison with previous results. The 

Lorenz equations [16,17] are arguable one of the best-known and 

most-studied dynamical systems that exhibit chaotic solutions. 

This also includes several works on ultimate bounds, compacts 

sets, or attractor enclosures [17–24] . Apart from analyzing a prop- 

erty of the Lorenz system, calculating bounds is also a possible 

starting point for applications, for instance estimating the fractal 

dimension [25] or the Hausdorff dimension of the Lorenz attrac- 

tor [24] . Attractor enclosures have additionally been used for the 

tracking of periodic solutions, stabilization of equilibrium points 

and synchronization [24,26,27] . 

The paper is structured as follows: In Section 2 we introduce 

our approach with briefly recalling quantifier elimination and cal- 

culating bounds on trajectories using Lyapunov-like functions. We 

also discuss how quantifier elimination can be used to obtain such 

bounds. The method is applied to the Lorenz system in Section 3 . 

We calculate spherical and elliptical bounds with fixed and vari- 

able center points and show that our method can be used to repro- 

duce, algebraically verify and partly improve bounds known from 

previous works [17,20,21] . In Section 4 we derive some conclusions. 

2. Computation of bounds for dynamical systems by quantifier 

elimination 

2.1. Real quantifier elimination 

Before we illustrate the proposed method let us briefly intro- 

duce some mathematical preliminaries on quantifier elimination 

(QE), cf. [28,29] , starting with a simple example to delineate the 

main ideas of QE. 

Let us consider the quadratic function g(x ) = a 2 x 
2 + a 1 x + a 0 . 

The question if a parameter constellation u = (a 0 , a 1 , a 2 ) exists 

such that the function values g ( x ) are always positive can be for- 

mulated using the quantified expression 

∃ a 2 , a 1 , a 0 ∀ x : g(x ) > 0 , 

which can easily be answered with true . If we are interested in 

all parameter constellations u , which result in g ( x ) > 0, we utilize 

QE. Therefore, we omit the quantifiers for u to generate an equiva- 

lent expression in these quantifier-free variables 

∀ x : g(x ) > 0 . 

Applying a QE method to the problem we get 

(a 1 = 0 ∨ 4 a 2 a 0 − a 2 1 � = 0) ∧ a 0 > 0 ∧ −4 a 2 a 0 + a 2 1 ≤ 0 . 

Thus, we get exact conditions which are equivalent to the previ- 

ous formula. After presenting the necessary fundamentals of QE, 

it is next shown how these techniques can be applied to estimate 

positive invariant sets. 

In the following, we introduce the concept of quantifier elimi- 

nation in a more formal way. 

An atomic formula is an expression of the form 

φ(x 1 , . . . , x k ) τ 0 (1) 

with a relation τ ∈ { >, = } , where φ ∈ Q [ x 1 , . . . , x k ] is a polynomial 

in the variables x 1 , . . . , x k with rational coefficients. A combina- 

tion of atomic formulas (1) with the Boolean operators ∧ , ∨ , ¬
is called a quantifier-free formula . With these standard operators 

we can express all other Boolean operators such as equivalence 

( ⇔ ) or implication ( ⇒ ) and augment the list of relations for (1) to 

{ <, ≤, >, ≥, = , � = } . 
Let F ( u,v ) be a quantifier-free formula in the variables u = 

(u 1 , . . . , u k ) and v = (v 1 , . . . , v l ) . A prenex formula is an expression 

G (u, v ) := (Q 1 v 1 ) . . . (Q l v l ) F (u, v ) (2) 

with quantifiers Q i ∈ { ∃ , ∀ } for i = 1 , . . . , l. The variables v are called 

quantified and the variables u are called free , respectively. Thus, 

the parameters { a 2 , a 1 , a 0 } gives the set u and { x } gives the set 

v in the before described example of the quadratic equation. The 

quantifiers occurring in (2) can be eliminated [30–32] . This pro- 

cess is referred to as quantifier elimination . The following theo- 

rem is a direct consequence of the well-known Tarski–Seidenberg- 

Theorem [33, pp. 69–70] : 

Theorem 1 (Quantifier elimination over the real closed field) . For 

every prenex formula G ( u,v ) there exists an equivalent quantifier-free 

formula H ( u ) . 

The first algorithm to determine such a quantifier-free equiv- 

alent was presented by Tarski itself. Unfortunately, this algorithm 

was not applicable because its computational complexity can not 

be bounded by any stack of exponentials. The first procedure 

which could be applied to non-trivial problems is cylindrical al- 

gebraic decomposition (CAD) [28] . This algorithm mainly consists 

of four steps. The first decompose the space in so-called cells in 

which every polynomial has a constant sign. Secondly, these cells 

are gradually projected from R 

n to R 

1 . These projections are cylin- 

drical and algebraic. The conditions of interest are evaluated in R 

1 

in the third step and the results are finally lifted to R 

n . Due to the 

universal applicability to the input sets of polynomials, this algo- 

rithm and its improvements (e.g. [34] ) are still often used. Never- 

theless, in the worst case the computational effort is doubly expo- 

nential in the number of variables [35] . 

The second commonly used procedure is virtual substitu- 

tion [2,36,37] . The problem ∃ v : F ( u, v ) is solved with a for- 

mula substitution equivalent, where a is substituted with terms 

of an elimination set. This procedure is just applicable to linear, 

quadratic and cubic polynomials, but the resulting complexity is 

“just” exponential in the number of quantified variables. Further- 

more, the resulting conditions are often very large and redundant 

such that a subsequent simplification is necessary. 

A third frequently applied method for QE is based on real root 

classification (RRC). The number of real roots in a given interval 

can be computed using Sturm or Sturm–Habicht sequences. Based 

on that idea, formulations to eliminated quantifiers can be gener- 

ated [38–40] . As in the case of virtual substitution the resulting 

output formulas are often very large and redundant such that a 

subsequent simplification is need as well. However, very effective 

algorithms can be achieved, especially for sign definite conditions 

∀ v ≥ 0 ⇒ f ( u, v ) > 0, see [40] . 

To carry out the quantifier elimination we used the open-source 

software packages QEPCAD [34,41] , and REDLOG [42] . The later 

package is part of the computer algebra system REDUCE. For both 

tools, the resulting quantifier-free formulas can be simplified with 

the tool SLFQ [43] . 

The computations were carried out on a standard PC with 

Intel ® Core TM i3-4130 CPU at 3.4 GHz and 32GiB RAM under the 

Linux system Fedora 25 (64 bit). For QE we used the advanced vir- 

tual substitution method from [44] (i.e., function rlqe with the 

switch on ofsfvs ). The authors made the source code of pro- 

totype implementations publically available on Github [45] under 

the GNU GPL v3.0 in order to allow a verification of the presented 

results. 
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