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a b s t r a c t 

Substantial evidence supports that financial returns time series exhibit abnormal properties including 

leptokurtosis, volatility clustering as well as intermittent jumps and leverage effects between returns and 

volatility processes. This paper studies a heavy-tailed stochastic volatility (SV) model with jumps compo- 

nents and leverage effects, and the Student’s- t distribution is employed to describe the error innovations 

(SVJL t ). Since the existence of high-dimensionality of the latent variables and the special structure of 

Hessian matrix of the stochastic volatility density, we develop an efficient Markov chain Monte Carlo 

(MCMC) posterior simulator exploiting the adaptive importance sampling technique based on band and 

sparse matrix routine rather than the conventional Kalman filter to estimate the new model. And the 

precision sampler is exploited due to the band structure of the inverse covariance matrix of the state 

variables. The model comparisons of returns volatility are conducted utilizing the observed-data based 

deviance information criterion (DIC) and the cross-entropy (CE) based marginal likelihood estimation. 

The effectiveness of the proposed model and the methodology are illustrated with applications in stock 

returns volatility forecast. Through employing several loss functions for evaluation, the empirical studies 

suggest strong evidence in heavy tailed distributions, jumps features and leverage effects simultaneously. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since the Gaussian distribution has weak abilities in captur- 

ing extreme events, a voluminous literature has demonstrated that 

financial time series display non-Gaussian distributional charac- 

teristics including leptokurtosis, fat tails and excessive skewness 

phenomena. Besides, the return volatility processes exhibit het- 

eroscedasticity, clustering and persistence effects [1–3] , thus lead- 

ing to stochastic jumps in stock returns. Through observing the 

evolutional dynamics of financial returns, it can be easily found 

that the returns processes are accompanied with not only mod- 

erate volatility, but also abrupt jumps components. Furthermore, 

it has been demonstrated by Ait-Sahalia and Jacod [4] , Klingler 

[5] that stochastic volatility and jumps covering both large abrupt 

jumps and small jumps are inherent components in the stock re- 

turns evolution dynamics which play important roles in derivative 

pricing and risk management. Many alternative models are devel- 

oped to explain the intrinsic characteristics of asset returns and 
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volatility [6,7] . Typically, the heteroscedastic errors and volatility 

clustering effects for returns variance are usually modeled employ- 

ing stochastic volatility models [8,9] . In addition, D’Agostino et al. 

[10] pointed out that it is crucial to capture these non-Gaussian 

features in order to generate accurate economic prediction. Hence, 

when modeling the underlying model of the financial volatility dy- 

namics, it requires incorporating the jumps components, fat tailed 

distributions in addition to the leverage effects between returns 

and volatility processes so as to improve the modeling accuracy. 

The variants of stochastic volatility models have been exten- 

sively investigated, such as the stochastic volatility in mean model 

proposed in Koopman and Hol Uspensky [11] for stock returns dy- 

namic modeling, along with that later used in Berument et al. 

[12] with macroeconomic data, and that used in Mumtaz and 

Zanetti [13] for monetary shock volatility processes. Even though 

plentiful work has been done on stochastic volatility models with 

jumps noises, for example, Todorov [14] , Andreas et al. [15] , Huang 

et al. [16] , they seldom simultaneously took into consideration the 

asymmetric leverage effects between returns and volatility pro- 

cesses. Researchers have found that the financial returns error in- 

novations and volatility error innovations exhibit negative relation- 

ships, namely the leverage effects [17,18] . Motivated by the em- 
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pirical dynamic characteristics of financial time series, we propose 

a comprehensive model accommodating volatility jumps compo- 

nents, heavy tailedness in returns distribution as well as taking ac- 

count of the leverage effects between returns process and volatil- 

ity process jointly. The improvements of our presented model over 

the prevailing are the comprehensive integration of jumps behav- 

iors modeled by the Poisson process, the thicker tail properties 

characterized by the Student- t distribution for persistence and het- 

eroskedasticity features in volatility processes of the underlying as- 

set returns, and the asymmetric interaction influences between re- 

turns and volatility dynamics. 

Because model estimation with high dimensional nonlinear 

state space model often involves multiple latent variables, it of- 

ten makes the likelihood evaluation difficult, leading to estimation 

difficult for implementation. It is necessary and significant to uti- 

lize more advanced methods to obtain an accurate parameter set 

for the proposed model so that it can be effectively applied with 

real market data. For models with few parameters, the Kalman fil- 

ter algorithm in Durbin and Koopman [19] can be used to sample 

from the high dimensional Gaussian density independently. How- 

ever, since the likelihood estimation may involve integrating higher 

dimensional states, the Kalman filter approach cannot be general- 

ized under this setting. Then the Bayesian analysis and the MCMC 

algorithm need to be utilized to draw from the joint posterior dis- 

tribution. Recently, the band and sparse matrix method has been 

widely used in nonlinear state space models [20–22] and nonlin- 

ear Markov stochastic processes [23] . The band matrix only com- 

prises of a few nonzero elements along the diagonal band, which 

proves critical for efficient sampling algorithms. When the Hessian 

matrix of the logarithm volatility of the stochastic volatility model 

is band matrix, the special structure can be utilized to speed up 

the computational time greatly. Instead of the Kalman filter based 

sampling algorithm, the precision sampler approach used in Chan 

and Jeliazkov [24] , McCausland et al. [25] turns out to be a more 

efficient choice. 

Since the Hessian matrix of the volatility density of the pro- 

posed model is a band matrix, the second novel feature of our 

method is that the importance sampling technique is established 

upon band and sparse matrix instead of the conventional Kalman 

filter algorithm for the SVJL t nonlinear state space model. Follow- 

ing the Bayesian analysis of the stochastic volatility model jointly 

with leverage effects, jumps innovations and heavy tails, an effi- 

cient MCMC precision sampler method is developed. We contribute 

to the estimation method researches of this kind of high dimen- 

sional nonlinear state space models, where multiple latent vari- 

ables are unobserved. 

The remainder of the paper is structured as follows. In 

Section 2 , we describe the newly proposed non-Gaussian stochas- 

tic volatility models with jumps components, fat tail distributions 

and leverage effects, and the corresponding band matrix based 

Bayesian analysis is carried out using precision sampler approach. 

In Section 3 , we outline the model comparison methods including 

DIC and CE methods, and then the assessment metrics of volatility 

forecast are outlined. Subsequently, the empirical researches con- 

sequences are exhibited in Section 4 , in which the estimation re- 

sults and forecasting outcomes are provided, respectively. Finally, 

we conclude the paper in Section 5 . 

2. The non-Gaussian stochastic volatility model with jumps, 

heavy tails and leverage effects 

2.1. The SVJL t model 

It has been proven that financial time series display abnormal 

properties. Several stylized facts about asset returns distributions 

are widely accepted including asymmetric leverage effects, lep- 

tokurtosis and thicker tail nature than the Gaussian distribution. 

Besides, in all our model analysis the serial dependence charac- 

teristics have been well considered. The basic stochastic volatil- 

ity model is extended to allow heavy tailed distributions to cap- 

ture outliers for extreme values, which can be expressed as the 

scale mixture of Gaussian distributions. In addition, the infrequent 

jumps described by the Poisson process are also taken into the 

SVJL t model, which is important in high frequency cases. Further- 

more, by incorporating the leverage effects, the negative correla- 

tion between returns innovations and volatility innovations can be 

described. Specifically, we consider the following model 

y = μ + k t q t + ε y t ε y t ∼ N(0 , e h t λt ) 

h t = μh + ϕ h ( h t−1 − μh ) + ε h t ε h t ∼ N(0 , ω 

2 
h 
) , 

(1) 

where h t denotes the logarithm volatility that follows the AR(1) 

process, the latent variable λt follows the inverse-gamma distribu- 

tion, namely λt ∼iid IG ( ν/2, ν/2), q t represents the Bernoulli ran- 

dom variable with probability P( q t = 1) = k , and k t denotes the ex- 

pectation of jump size. 

The innovations in the mean equation follow the Student- t dis- 

tribution, which can be expressed as the scale mixture of Gaussian 

distributions. Due to its fat tails than that in the normal distribu- 

tion, it can better capture the occurrence of outliers. And the re- 

turns innovations εt 
y and the volatility innovations εt 

h jointly fol- 

low the bivariate normal distribution as follows (
ε y t 

ε h t 

)
∼ N 

(
0 , 

(
e h t ρe 

1 
2 h t ω h 

ρe 
1 
2 h t ω h ω 

2 
h 

))
. (2) 

The SVJL t model can be simplified into several benchmark mod- 

els. If k t q t = 0, εt 
y and εt 

h are mutually independent, and λt = 0, it 

reduces to the basic SV model; If λt = 0, ε t y and ε t h are mutually 

independent, it reduces to the SV model with jumps components 

(SVJ). If k t q t = 0, and λt = 0, it reduces to the SV model with lever- 

age effects (SVL). If k t q t = 0, εt 
y and εt 

h are mutually independent, 

it reduces to the SV model with Student- t innovation distribution 

(SV t ). 

Then we give the corresponding prior settings for the SVJL t 

model and list the independent priors in the following table 

( Table 1 ). 

And the degree of freedom parameter v satisfies v > 2 to ensure 

the existence of moments. 

2.2. The band matrix based Bayesian estimation 

The simulation techniques of the nonlinear state space model 

have been greatly developed recently. Since the likelihood evalu- 

ation of the proposed model involves integrating multiple latent 

variables, we adopt the Bayesian method and employ the MCMC 

algorithm to jointly simulate from the posterior distribution. In 

this section, an efficient sampler will be built on the development 

in the nonlinear state space model simulation technique for the 

generalized model. Moreover, the computation efficiency can be 

greatly enhanced via exploiting the special structure of the matrix 

of the SVJL t model. 

Let h = ( h 1 ,…, h T )’, y = ( y 1 ,…, y T )’, then we can sequentially sam- 

ple the posterior draws of h , μ, μh , ϕh , ω h 
2 according to the pro- 

cedure in Table 2 . 

Note that the Hessian matrix of log p ( h | y , μ, μh , ϕh , ω h 
2 , k t , 

q t , λt ) is band, which merely contains nonzero elements along the 

narrow diagonal band, providing a significant feature in reducing 

the computational burden. By utilizing the band matrix character- 

istics, the integrated likelihood can be obtained by integrating the 

logarithm volatility h t , which can be evaluated through the im- 

portance sampling algorithm. And the importance density is estab- 

lished quickly via approximating the Gaussian conditional density 

of y t given h t . Then the obtained Gaussian approximation is used 
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