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a b s t r a c t 

Motivated by extensively applied tax policy in real society, we investigate the evolution of cooperation by 

incorporating tax mechanism into evolutionary game theory. We introduce two parameters: base tax rate 

p and progressive tax rate A . Players are taxed differentially depending on whether their payoffs exceed 

the average payoff of the system. Simulation results show that there is a non-monotonic influence in the 

fraction of cooperation as p increases for any given value of A ; suitable p values are helpful to the exis- 

tence of cooperators. We provide an explanation by studying the payoffs of players at the boundaries of 

cooperators. On the other hand, when we investigate the effect of A , we find that cooperation frequency 

increases monotonically with the increment of A for a relatively small value p , which is contrary to the 

effects when p is relatively large. To explain the nontrivial dependence of the cooperation level on A , we 

examine the number of players with high payoffs. In addition, we provide theoretical analysis of the co- 

operation level. Our work may be helpful in understanding the effect of tax phenomena on cooperative 

behavior. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cooperation is widespread in the real world. Indeed, it can be 

seen as the foundation for the sustainable development of many 

natural and social systems. However, it remains a challenging prob- 

lem to understand the emergence and persistence of cooperative 

behavior, as it contradicts Darwinian selection [1,2] . Cooperation is 

frequently addressed within the framework of game theory [3–5] . 

As one of the representative games, prisoner’s dilemma game in 

particular illustrates the emergence of cooperation among selfish 

individuals, and it has attracted considerable attention in both the- 

oretical and experimental studies [6–9] . In evolutionary PDG, the 

players have two behavioral options: They decide simultaneously 

whether to cooperate or defect. Both players receive reward R for 

mutual cooperation and punishment P for mutual defection. If one 

of the players defects while the other cooperates, the defector re- 

ceives temptation T while the cooperator gets a sucker’s payoff

S . The payoffs must satisfy the following restrictions: S < P < R < T 

and T + S < 2 R . It is obvious that defection is a better choice for a 

player regardless of the opponent’s decision. In the case of well- 

mixed populations, defectors will get a higher payoff than cooper- 
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ators, resulting in the “tragedy of the commons”. To overcome the 

dilemma, several mechanisms that support the evolution of coop- 

eration have been identified. 

In a pioneering work, Nowak and May combined the spatial 

structure with PDG, in which individuals play games only with 

their immediate neighbors. Under this circumstance, cooperators 

tend to form clusters where mutual cooperation outweighs the loss 

against defectors [10] . Inspired by this research, different network 

structures aiming at sustaining cooperation are proposed and in- 

vestigated to explain cooperative behaviors. Examples include reg- 

ular networks [11–18] , complex networks [19–26] , and adaptive 

networks with alternative interactions [27,28] . Many mechanisms 

have also been put forward in the past few years. Examples include 

noise [29–32] , reward mechanism [33–38] , voluntary participation 

[39] , the mobility of players [40–43] , nonlinear neighbor selection 

[44–46] , and memory effects [47–50] , to name only a few. 

However, the widespread tax phenomenon is neglected in most 

previous literature. As an effective way to increase government 

revenues and maintain social stability via personal income regu- 

lation measures, taxation is of fundamental significance in most 

countries. According to Copers&Lybrand’s 1995 International Tax 

Survey , 110 of the 120 countries and territories implement a per- 

sonal income tax, while 103 countries and territories utilize a pro- 

gressive tax rate, and only Bolivia, Jamaica and five others use a 

single proportional tax rate. Based on this, we propose a model 
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applying a progressive tax mechanism in spatial evolutionary 

games. In our model, the average payoff of the system, denoted as 

P ave , is calculated. Then, each player pays taxes at the base tax rate 

p when the payoff is lower than P ave . If the player’s payoff is larger 

than P ave , the larger part will be extra taxed at progressive tax rate 

A as in the real world. We find that there is a non-monotonic influ- 

ence in the fraction of cooperation as p or A changes. Cooperation 

is promoted within a certain range of parameters. We then study 

the payoffs of players along the boundaries of cooperators and in- 

vestigate the players with a high payoff to provide an explanation. 

In the following paper, we first describe the considered spatial 

game model combined with tax mechanism. Next, we present the 

main results and explain the effect of the tax mechanism on the 

evolution of cooperation. Finally, we summarize our conclusions. 

2. Model 

In our model, players are located on a 100 × 100 square lattice 

with periodic boundary conditions [10] . In the initial state, each 

player chooses cooperation(C) or defection(D) with equal probabil- 

ity, which can be described in the form of a vector as follows: 

φ = 

(
1 

0 

)
or 

(
0 

1 

)
(1) 

We use boundary game between PDG and chicken game here 

[51–53] . In PDG, both D g = T − R and D r = P − S are positive. When 

D g is positive and D r is negative, we face the so-called chicken 

game. Here we set D g = b − 1 > 0 and D r = 0 − 0 = 0 , where b ∈ (1, 

2) is the temptation of defectors. At each time step, the player 

plays the game only with its immediate neighbors and gets pay- 

offs in accordance with the payoff matrix: 

ψ = 

(
1 0 

b 0 

)
(2) 

Therefore, the total payoff of the player x is the sum of payoffs 

after x interacts with its four neighbors, which can be expressed 

as: 

I x = 

∑ 

y ∈ �x 

φT 
x ψφy (3) 

where �x denotes the neighbors of player x . After each round, the 

average payoff P ave of the whole system is calculated. Then, the tax 

mechanism works. The payoff of each player is regulated as: 

F x = 

{
I x · (1 − p) if I x ≤ P a v e 
P a v e · (1 − p) + (I x − P a v e ) · (1 − A · p) if I x > P a v e 

(4) 

We denote F x as the fitness of player x . Here, p ∈ [0, 0.5] and 

A ∈ [1.5, 2] are the base tax rate parameter and progressive tax 

rate parameter, respectively. When p = 0 , our model reduces to the 

original model. For the convenience of discussion, player x then se- 

lects a neighbor y at random and updates its strategy with proba- 

bility based on the Fermi updating rule: 

W x → y = 

1 

1 + exp[(F x − F y ) /K] 
(5) 

where parameter K characterizes noise or stochastic factors to per- 

mit irrational choices. Following previous studies, we set the noise 

level as K = 0 . 1 [54,55] . All simulations run 10 4 time steps. And 

the final cooperation frequency is obtained by averaging over the 

last 10 3 steps. Each data point is averaged over 100 individual runs. 

3. Simulation results and analysis 

3.1. Main results 

To quantify the ability of base tax rate parameter p and progres- 

sive tax rate parameter A for promoting cooperation precisely, we 

compute the behavior of cooperation frequency in parameter plane 

( p, A ). Fig. 1 (a) presents the outcomes when b = 1 . 03 . As shown, 

the cooperation frequency ( ρC ) shows a peak shape with an in- 

crement of p. ρC first increases with p from zero, and there exists 

an optimal value of p in which ρC takes its maximum, indicating 

that the cooperation frequency is promoted by the tax mechanism. 

However, when we further increase p , there are fewer and even no 

cooperators in the system. On the other hand, the larger the pro- 

gressive rate A is, the earlier that the cooperators begin to appear 

and the greater the number that is reached, eventually vanishing 

with the increment of p . 

For larger dilemma strength b (for example b = 1 . 035 , as shown 

in Fig. 1 (b)), the tendency of the evolution of cooperation does not 

change in parameter plane ( p, A ). However, the cooperation belt 

narrows and cooperation frequency drops at the same values of 

p and A . When we set b = 1 . 04 , there are no cooperators in the 

system. 

In the following paper, we study the effect of p and A on the 

evolution of cooperation at b = 1 . 03 . Simulation analysis and theo- 

retical analysis are presented correspondingly. 

3.2. Analysis of base tax rate p 

For any fixed A , cooperation frequency ρC changes non- 

monotonically as base rate p increases. To explain this phe- 

nomenon, we examine the time series and give a concrete analysis 

based on a toy model of two different time steps. 

First, we examine the time evolution of ρC for different base tax 

rate p . Fig. 2 features the time series of different p values when 

b = 1 . 03 and A = 1 . 8 . For the first few time steps, ρC decreases 

sharply, and larger p results in higher ρC (zoomed in by the in- 

set panel). However, along with the evolution, moderate p ( p = 0 . 3 , 

yellow line) outperforms others and reaches a high cooperation 

state( ρC = 0 . 24 ). In contrast, small p ( p = 0 . 2 , green line) ends 

with a low cooperation state ( ρC = 0 . 13 ), while cooperators ulti- 

mately become extinct( ρC = 0 ) and the system falls into the pure D 

state for the large p(p = 0 . 4 , purple line). This can be explained as 

follows. In the first few time steps, cooperators and defectors are 

fully mixed in the system. Under this circumstance, defectors ex- 

ploit cooperators to obtain a higher payoff readily, and the whole 

system tends to step into a pure D state. As the tax mechanism 

works, the rich defectors have to pay more taxes compared to the 

boundary cooperators, and the difference in fitness between them 

is decreased, which is beneficial for the survival of cooperators. 

Here, a boundary cooperator(defector) is a cooperator(defector) 

with at least one defector(cooperator) neighbor. Therefore, ρC in- 

creases monotonically with the increment of p at this stage. Next, 

the surviving cooperators form clusters, and the boundary coop- 

erators earn more payoffs than the defectors, where the high tax 

rate works as a punishment on cooperators. Because of this two- 

sided effect of the tax rate, whereby defectors are penalized at an 

early stage and then cooperator clusters are damaged, there is an 

appropriate value of p that helps to bring about the maximum of 

ρC . 

To understand the mechanism above more intuitively, we focus 

on boundary players and study the difference in their fitness by 

a toy model of different time steps. Fig. 3 (a) shows a snapshot of 

early time steps on a 5 × 5 square lattice with a periodic bound- 

ary, in which cooperators and defectors are evenly mixed. Fig. 3 (b) 

presents the situation when cooperators form clusters. For bound- 

ary cooperator and defector in the brown domain of Fig. 3 (a), the 

cooperator( C ) gets payoff I = 2 , while the defector( D ) gets payoff

I = 2 . 06 . Since D ’s payoff exceeds C ’s, the difference in fitness be- 

tween them narrows as p increases, which is common for nearly 

all C − D pairs in (a). Fig. 3 (c) shows the transfer frequency for C 

to D ( W C → D ) in the brown domain and, obviously, W C → D decreases 
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