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In this paper, fixed-time synchronization of two fractional order chaotic systems in the presence of uncer- 

tainties and exogenous disturbances using a fuzzy adaptive sliding mode controller has been investigated. 

In the proposed approach, the upper bound of the synchronization time is completely independent of the 

difference between the initial conditions of the master and slave systems and just depends on the design 

parameters of the switching surface and controller. Adaption laws are proposed for selecting controllers 

and switching surface parameters to have a proper control and reduce control dependence on estimation 

of disturbances upper bound. Furthermore, to remove chattering phenomenon a fuzzy logic system is 

used. The fixed-time stability and controller design are driven based on Lyapunov stability theorem and 

simulations results are provided to show the effectiveness of proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Chaos is a complex nonlinear phenomenon, which is very sen- 

sitive to the initial conditions and can be found in some natural 

or artificial dynamical systems. Chaos synchronization refers to de- 

sign a controller such that a chaotic system, which called Slave or 

Response system, tracks another chaotic system which called Mas- 

ter or Reference system. Extensive studies have been proposed on 

the integer-order chaotic synchronization. For example, in [1] A 

time-varying switching surface has been proposed, which reach- 

ing phase is eliminated and complete robustness is proved. On the 

other hand, fractional-order dynamical systems show more com- 

plex behavior than integer-order counterparts [2] . Therefore, con- 

trol and synchronization of fractional order chaotic systems are 

more complicated than integer order ones and have been attracted 

much attention from researchers in the control and engineering 

communities in the recent years [3] . For example, in the secure 

communication, information processing, encryption by fractional 

order chaotic systems can decrease hackers’ attacks [4] . 

Therefore, many controlling methods proposed for synchroniza- 

tion fractional order chaotic systems. In [5,6] active control ap- 

proach used to modified projective synchronization of fractional 

order chaotic systems with time-varying delays. In [7] , a compos- 

ite nonlinear feedback control technique based on the Lyapunov–
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Krasovskii stabilization theorem and LMIs used to chaos synchro- 

nization with time-varying delay. In [8–11] , proposed adaptive con- 

trol methods to overcome fractional chaos synchronization prob- 

lems to the presence of unknown parameters. 

We know the Sliding Mode Control (SMC) is a robust nonlinear 

control that is suitable in synchronization problems. In [12,13] free 

chattering sliding mode control methods had proposed. In [14–

16] new reaching laws in the reaching phase are introduced. In 

[17–19] the sliding mode controller is finite time in reaching mode, 

and the sliding mode is asymptotically stable. All above-mentioned 

researches concentrate on the asymptotically stability synchroniza- 

tion problem, while the finite time synchronization may needs in 

some critical-time problems. In [20–25] , using a fractional non- 

singular terminal sliding mode technique, finite-time synchroniza- 

tion of the fractional chaotic systems presented. However, in these 

works, just an upper bound, which depends on the initial con- 

ditions of the two chaotic systems for synchronization time, can 

be determined. Moreover, reducing the synchronization time will 

cause chattering phenomena in the control signals. In [26] , an 

adaptive sliding mode with the disturbance observer is used to 

the fractional synchronization. In this paper using a terminal slid- 

ing mode, is designed a controller that ensures fixed-time stability 

of the synchronization error dynamics. In the designed controller, 

the upper bound of settling time was independent of the initial 

conditions of the both master and slave systems. We know, incor- 

rect selection of design parameters in the presence of uncertainties 
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and/or external disturbances may lead to the poor performance or 

even system instability. 

Motivated by the above discussion, this paper proposes a fixed- 

time synchronization technique, which the upper bound of stabil- 

ity time is independent of the difference between the initial con- 

ditions of the two systems. Moreover, adaptive laws have been 

utilized to obtain the appropriate design parameters and reduce 

the requirement of knowledge about uncertainties and disturbance 

bounds. In addition, a Fuzzy Logic Controller (FLC) has been used 

to avoid chattering problem. In the simulation results’ section, the 

effects of adding a fuzzy controller to the control loop, sliding 

mode controller (SMC) and fuzzy adaptive sliding mode controller 

(FASMC) have been compared in details. 

2. Preliminaries 

In this section, some definitions and lemmas that are necessary 

for obtaining a synchronizing controller are presented. 

Lemma 1. [27] For any real variable x 1 , x 2 , . . . , x n the following in- 

equality holds: 

n ∑ 

i =1 

x i ≤
∣∣∣∣∣

n ∑ 

i =1 

x i 

∣∣∣∣∣ ≤
n ∑ 

i =1 

| x i | (1) 

2.1. Fixed-time stability 

Consider the following differential equation system: 

˙ x ( t ) = f ( x ( t ) ) , x ( 0 ) = x 0 (2) 

where x ∈ R n and f : R n → R n is a nonlinear function. Suppose that 

the origin is an equilibrium point of (2) . 

Definition 1. [28,29] The origin of the system (2) is a finite time 

stable equilibrium if the origin is Lyapunov stable and there ex- 

ists a function T : R n → R + , called the settling time function, such 

that for every x 0 ∈ R n , the solution x ( t, x 0 ) of system (2) satisfies 

lim 

t→ T ( x 0 ) 
x ( t, x 0 ) = 0 . 

Definition 2. [30] The origin of the system (2) is said to be fixed- 

time stable equilibrium point if it is globally finite time stable with 

bounded convergence time T ( x 0 ), that is, there exists a bounded 

positive constant T M 

such that T ( x 0 ) < T M 

satisfies. 

Lemma 2. [31] Consider the following system: 

˙ x ( t ) = −a x μ1 − b x μ2 , x ( 0 ) = x 0 (3) 

where a, b > 0 and μ1 , μ2 are the ratio of two positive odd in- 

tegers which satisfying μ1 > 1 and μ2 < 1. Then, the equilibrium 

point of system (3) is fixed-time stable, and the settling time is 

upper bounded by: 

T < 

1 

a ( μ1 − 1 ) 
+ 

1 

b ( 1 − μ2 ) 
(4) 

3. System description and problem formulation 

Consider the following n-dimensional non-autonomous frac- 

tional order chaotic system with uncertainties and external distur- 

bances: 

D 

αx 1 ( t ) = f 1 ( x, t ) + � f 1 ( x, t ) + d S 1 ( t ) + u 1 ( t ) 

D 

αx 2 ( t ) = f 2 ( x, t ) + � f 2 ( x, t ) + d S 2 ( t ) + u 2 ( t ) 
. . . 

D 

αx n ( t ) = f n ( x, t ) + � f n ( x, t ) + d S n ( t ) + u n ( t ) 

(5) 

where D 

α is Caputo derivative [32,33] , α ∈ (0, 1) is the order of the 

system’s dynamic equations, x = [ x 1 , x 2 , . . . , x n ] 
T ∈ R n is the state 

vector of slave system, f i ( x, t ) ∈ R, i = 1 , 2 , ..n are known nonlin- 

ear functions of x ( t ) and t, �f i ( y, t ) ∈ R and d S 
i 

∈ R, i = 1 , 2 , . . . , n are 

model uncertainties and external disturbances of the slave system, 

respectively and u i (t) , i = 1 , 2 , . . . , n are the control input. 

Assumption 1. The uncertainties �f i ( x, t ) and external distur- 

bances d S 
i 
(t) are bounded, that is, there exist positive constants 

γ � f 
i 

, γ dS 
i 

, such that | � f i (x, t) | ≤ γ � f 
i 

, | d S 
i 
(t) | ≤ γ dS 

i 
. 

Control aim is to design fractional order fixed-time nonsingular 

terminal sliding mode control signals u i for slave system (5) such 

that its state trajectories track the following master system trajec- 

tories in a finite time independent from the distance between sys- 

tems initial conditions. 

D 

αy 1 ( t ) = g 1 ( y, t ) + �g 1 ( y, t ) + d M 

1 ( t ) 

D 

αy 2 ( t ) = g 2 ( y, t ) + �g 2 ( y, t ) + d M 

2 ( t ) 
. . . 

D 

αy n ( t ) = g n ( y, t ) + �g n ( y, t ) + d M 

n ( t ) 

(6) 

where α ∈ (0, 1) is the order of the dynamic equations system, y = 

[ y 1 , y 2 , . . . , y n ] 
T ∈ R n is the state vector of master system, g i ( y, t ) ∈ 

R, i = 1 , 2 , . . . , n are known nonlinear functions of y ( t ) and t, �g i ( y, 

t ) ∈ R and d 
g 
i 

∈ R, i = 1 , 2 , . . . , n are uncertainties and external dis- 

turbances of the system. 

Assumption 2. The uncertainties �g i ( y, t ) and external distur- 

bances d M 

i 
(t) are bounded, that is, there exist positive constants 

γ �g 
i 

, γ dM 

i 
, such that | �g i (x, t) | ≤ γ �g 

i 
, | d M 

i 
(t) | ≤ γ dM 

i 
. 

Remark 1. It is hard to obtain the exact values for external dis- 

turbances and uncertainties in many practical systems. However, 

the upper bound of external disturbances and uncertainties can 

be exactly estimated. For example, using adaptive techniques pre- 

sented in [34,35] . Further, the state variables of chaotic attractors 

are bounded [36] . Therefore, Assumptions 1 and 2 are reasonable 

and accurate. 

Subtracting (5) from (6) and defining e i 
�= y i − x i , i = 1 , 2 , . . . , n , 

as synchronization error, the synchronization error dynamics with 

taking α-order fractional derivation is obtained as follows: 

D 

αe 1 ( t ) = g 1 ( y, t ) + �g 1 ( y, t ) + d M 

1 ( t ) − f 1 ( x, t ) 

−� f 1 ( x, t ) − d S 1 ( t ) − u 1 ( t ) 

D 

αe 2 ( t ) = g 2 ( y, t ) + �g 2 ( y, t ) + d M 

2 ( t ) − f 2 ( x, t ) 

−� f 2 ( x, t ) − d S 2 ( t ) − u 2 ( t ) 

. . . 

D 

αe n ( t ) = g n ( y, t ) + �g n ( y, t ) + d M 

n ( t ) − f n ( x, t ) 

−� f n ( x, t ) − d S n ( t ) − u n ( t ) (7) 

Now, the fixed-time synchronization problem is transformed 

into the fixed-time stabilization of the dynamical system (7) . 

3.1. Sliding surface 

The sliding surface is selected as follows: 

s i = D 

α−1 e i + D 

α−2 
(
a i | e i | μ1 + b i | e i | μ2 

)
sign ( e i ) (8) 

where a i , b i > 0, μ1 , μ2 are the ratio of two positive odd integers 

which satisfying μ1 > 1 and μ2 < 1 and sign ( · ) is sign function. 

Remark 2. The sign function is a discontinuous function that re- 

quires ideal switching (infinite switching frequency) to realize it. 

Given this fact that the fractional order integral acts like a low-pass 

filter on the sign function in the sliding surface (8) , this problem 

will be solved, and the high-frequency contents will be eliminated. 
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