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a b s t r a c t 

In this paper, we discussed the input-to-state stability of a class of memristive Cohen–Grossberg-type 

neural networks with variable time delays. Based on a nonsmooth analysis and set-valued maps, some 

novel sufficient conditions are obtained for the input-to-state stability of such networks, which include 

some known results as particular cases. Especially, when the input is zero, it reduced to asymptotical sta- 

bility of the state. Finally, an illustrative example is presented to illustrate the feasibility and effectiveness 

of our results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The model of Cohen–Grossberg neural networks (CGNNS) is 

proposed by Cohen and Grossberg in 1983 [1] . Generally, the 

model can be described as follows: 

˙ x i (t) = −a i 
(
x i (t) 

)[ 

c i 
(
x i (t) 

)
−

n ∑ 

j=1 

a i j f j 
(
x j (t) 

)
+ I i 

] 

, 

i = 1 , 2 , · · · , n, (1.1) 

where n represents the number of neurons of the network, a i ( · ) 

is the amplification function, x i ( t ) represents the activations of the 

i -th neurons, the element a ij of the n × n connection matrix A gives 

the synaptic weight of the connection from neuron i to neuron j , 

f j ( j = 1 , 2 , · · · , n ) denotes the signal transmission functions, and 

I i (i = 1 , 2 , · · · , n ) the external input. Due to successful applications 

in pattern recognition, associate memory and solving optimization, 

dynamical behaviors of the neural networks have attracted increas- 

ing interests [1–11] . Thus it plays an important role in the modern 
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theory of neural networks. A lot of researchers are interested in 

the stability or synchronization of the Cohen–Grossberg neural net- 

works. they obtained many significant results [3–11] . If we choose 

proper coefficients and functions, CGNNs will be reduced to some 

well-known neural networks [12–16] , such as Lotka–Volterra com- 

petition systems, Hopfield neural networks, recurrent neural net- 

works and cellular neural networks, thus this model is extremely 

general. 

On the other hand,Chua [17] predicted the existence of mem- 

ristors in addition to the classic resistor, capacitor and inductor in 

1971. It is considered to be the fourth circuit element. The first 

practical memristor device was found until 2008 by Strukov et al. 

[18] . Memristors can capture some key aspects of biological synap- 

tic plasticity, similar to that of biological synapses [19] , that is, it 

imitates human’s brain to its memory and forgetting ability. So, 

it is significant that the characteristic of memristor is considered 

in neural networks. It has attracted researchers’ attention since 

then. Some scientists try to replace the resistors with memristors 

in the convention Cohen–Grossberg-type neural network models 

and exploit dynamical behaviors of memristive neural networks. 

It will provide the great potential help for building a brain-like 

neural computer to implement the biological synaptic plasticity of 
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biological brains. Thus dynamical behaviors of neural networks 

with memristive effects has been considered in [20–25] . On the 

other hand, in practice information transmission often needs a de- 

lay time; generally, because of the finite propagation velocity and 

delays in the transmission of signal. Thus it is necessary to con- 

sider delay effects in neural networks [5–8,11–16] . 

Memristive neural networks with delay effects have attracted 

considerable attention recently [17–24] . Wu et al. [20] investigated 

the Lagrange stability of memristive neural networks by the non- 

smooth analysis method and control theory. Later they considered 

the global exponential stability and global asymptotical stability for 

a class of delayed memristive neural networks [21] . Zhong et al. 

[22] obtained some sufficient conditions for the input-to-state sta- 

bility of a class of memristive neural networks with time-varying 

delays. Liu et al. [23] studied the input-to-state stability for a class 

of memristor-based complex-valued neural networks with time de- 

lays. Inspired by the above works [6–11,17,22–24] , we will here 

investigate the following memristive Cohen–Grossberg-type neu- 

ral networks with variable time delays, which can be described 

by variable time delayed differential equations with discontinuous 

right-hand sides: 

˙ x i (t) = −d i 
(
x i (t) 

)[ 

x i (t) −
n ∑ 

j=1 

a i j (x i (t )) f j 
(
x j (t ) 

)
−

n ∑ 

j=1 

b i j (x i (t)) f j 
(
x j (t − τ j (t )) 

)
+ I i 

(
t ) 

] 

, t ≥ 0 (1.2) 

where d i , f i , I i are the same as in system (1.1). The delays τ j ( t ) ≥ 0 

(i, j = 1 , 2 , ..., n ) satisfy 0 < τ j (t) < τ, ˙ τ j (t) ≤ μ < 1 , j = 1 , 2 , · · · , n . 

a ij ( x i ( t )) and b ij ( x i ( t )) represent memristor-based weights, and 

a i j (x i (t)) = 

W i j 

C i 
× sgn i j , b i j (x i (t)) = 

M i j 

C i 
× sgn i j , 

sgn i j = 

{
1 , i � = j, 

−1 , i = j. 

According to the feature of a memristor and its current-voltage 

characteristic, we have 

a i j (x i (t)) = 

{ 

ˆ a i j , sgn i j 
df j (x j (t)) 

dt 
− x i (t) 

dt 
≤ 0 , 

ă i j , sgn i j 
df j (x j (t)) 

dt 
− x i (t) 

dt 
> 0 . 

(1.3) 

b i j (x i (t)) = 

{ 

ˆ b i j , sgn i j 
df j (x j (t−τ j (t))) 

dt 
− x i (t) 

dt 
≤ 0 , 

b̆ i j , sgn i j 
df j (x j (t−τ j (t))) 

dt 
− x i (t) 

dt 
> 0 . 

(1.4) 

The solution of system (1.2) is represented by x (t) = (
x 1 (t) , · · · , x n (t) 

)T ∈ R n . 

System (1.2) is supplemented with the initial values 

x i (s ) = ϕ i (s ) , s ∈ (−τ, 0] , i = 1 , 2 , · · · , n, 

where ϕi ( · ) denotes a real-valued continuous function defined on 

(−τ, 0] . 

To obtain our results of system (1.2) , we introduce the following 

assumptions: 

(H1) d i ( · ): R → R is positive, continuous and bounded such that 

0 < d i ≤ d i (·) ≤ d i < ∞ . 

(H2) f i ( · ): R → R is globally Lipschitzian with positive constants 

l i > 0 such that 

| f i (x ) − f i (y ) | ≤ l i | x − y | , 
for any x ( t ), y ( t ) ∈ R . 

The rest of this paper is organized as follows. In Section 2 , 

we introduce some notations, definitions and some preliminary re- 

sults. In Section 3 , we give sufficient conditions for the input-to- 

state stability of the solution of system (1.2) . Finally, in Section 4 , 

an example illustrates the feasibility and effectiveness of our 

results. 

2. Preliminaries 

In this section, we introduce some notations, definitions and 

some preliminaries, which will be used in our main results. 

In this paper, solutions of all systems considered in the 

following are intended in the Filippov’s sense [26] . co { ̂  a , ̌a } 
denotes the closure of the convex hull generated by real 

numbers ˆ a and ǎ . x (t) = 

(
x 1 (t ) , · · · , x n (t ) 

)T ∈ R n denotes a col- 

umn vector, ‖ x ‖ = max 1 ≤i ≤n {| x i |} , | x | = (| x 1 | , | x 2 | , · · · , | x n | ) T ; I(t) ∈ 

L n ∞ 

: R + → R n with ‖ I‖ sup = sup{‖ I(t) ‖ , t ≥ 0 } < + ∞ . Let ˜ a i j = 

max {| ̂  a i j | , | ̌a i j |} , ̃  b i j = max {| ̂ b i j | , | ̌b i j |} , for i, j = 1 , 2 , . . . , n . 

In what follows, we give some definitions, which are necessary 

to proof our results. 

Definition 1. Let E ⊂ R n , x �→ F ( x ) be called a set-valued map from 

E ↪→ R n , if x ∈ E , there is a corresponding nonempty set F ( x ) ⊂ R n . 

Definition 2. For the system 

dx 
dt 

= g(x ) , x ∈ R n , with discontinous 

right-hand sides, a set-valued maps is difined as 

φ(x ) = 

⋂ 

δ> 0 

⋃ 

μ(N)=0 

co [ g(B (x, δ)) \ N] 

where co [ E] is the closure of the convex hull of set E, B (x, δ) = 

{ y : ‖ y − x ‖≤ δ and μ( N ) is a Lebesgue measure of set N. A so- 

lution in Filippov’s sense of the Cauchy problem for this system 

with initial condition x (0) = x 0 is an absolutely continuous func- 

tion x ( t ), t ∈ [0, T ], which satisfies x (0) = x 0 and the differential in- 

clusion [27] : 

dx 

dt 
∈ φ(x ) f or a.e. T ∈ [0 , T ] . 

Definition 3. A scalar continuous function α( r ), defined for 

r ∈ [0, a ) is said to belong to the class κ if it is strictly increas- 

ing, and α(0) = 0 . It is said to belong to the class κ∞ 

for all r ≥ 0 

and also α(r) → + ∞ as r → + ∞ . 

Definition 4. A function β( r, s ), defined for r ∈ [0, a ) and s ∈ [0, ∞ ) 

is said to belong to the class κL if for each fixed s ≥ 0, the mapping 

β( r, s ) belongs to the class K with respect to r and for each fixed r , 

the mapping β( r, s ) is decreasing with respect to s and β( r, s ) → 0 

as s → ∞ . 

Definition 5. System (1.2) is said to be input-to-state stable if 

there exist a κL function β and a κ∞ 

function α such that 

‖ x (t; x 0 , I(t)) ‖ ≤ β(‖ x 0 ‖ ∞ 

, t) + α(‖ I(t) ‖ sup ) , t ≥ 0 , (2.1) 

for any x 0 ∈ R n , I(t) ∈ L n ∞ 

. 

Remark 1. When the input I ( t ) is zero, the system (1.2) is asym- 

totically stability; When the input I ( t ) is bounded, note that β is 

a κ∞ 

function, and also bounded. From (2.1) , ‖ x ( t ; x 0 , I ( t )) ‖ is 

bounded. Therefore, system (1.2) is input-to-state stable, and also 

called bounded-input bounded-output (BIBO) stable. Furthermore, 

the solution is input-to-state stable in Lyapunov sense. It is differ- 

ent from Lagrange stability [20] , which is considered to discuss the 

stability of the total system, not the stability of equilibria. 

3. Main results 

We will now discuss input-to-state stability of system (1.2) from 

the viewpoint of the nonsmooth analysis and set-valued maps 

[27,28] . In terms of differential inclusions and set-valued maps, 

from system (1.2) it follows that 
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