
Chaos, Solitons and Fractals 114 (2018) 381–393 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Synchronization of stochastic complex networks with discrete-time 

and distributed coupling delayed via hybrid nonlinear and impulsive 

control � 

Mengzhuo Luo 

a , b , c , ∗, Xinzhi Liu 

b , Shouming Zhong 

d , Jun Cheng 

e , f 

a College of Science, Guilin University of Technology, Guilin, Guangxi 541004, PR China 
b Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 
c Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin, Guangxi 541004, PR China 
d School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China 
e School of Science, Hubei University for Nationalities, Enshi, Hubei 4450 0 0, PR China 
f College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061, PR China 

a r t i c l e i n f o 

Article history: 

Received 13 February 2018 

Revised 29 May 2018 

Accepted 17 July 2018 

Keywords: 

Stochastic complex networks 

Pinning impulsive control 

Synchronization 

Coupling delays 

Hybrid controller 

a b s t r a c t 

In this paper, the problem of pinning and impulsive synchronization for a class of general hybrid coupling 

delayed stochastic complex networks is investigated. The involving hybrid coupling delays terms are not 

only included current-state coupling, but also contained discrete-time and distributed coupling delays. 

Moreover, in order to achieve synchronization, a hybrid controller, which contains a nonlinear controller 

and a pinning impulsive controller is introduced simultaneously. By taking the advantage of Lyapunov 

method in synchronization analysis, some sufficient conditions are obtained through two different algo- 

rithms, which guarantee global synchronization of stochastic complex networks with large delay. Mean- 

while, the relationship between the number of pinned nodes and impulsive gain are quantitatively ana- 

lyzed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past few years, there has been a substantial growth of re- 

search interest in the study of complex networks in various fields, 

which including mathematics, biology, physics, sociology and so 

on [1,2] . As is well known, complex networks usually consist of 

many set of coupled interconnected nodes, and each node is a 

dynamical system, so synchronization means that all nodes have 

the same dynamical behavior under some local protocols between 

the communication with each node’s neighbors, therefore, syn- 

chronization and its control problem have been very important is- 

sues for complex networks [3–6] . So, based on the requirement of 

practical problems, a large of synchronization patterns have been 

analyzed, like complete synchronization [7,8] , cluster synchroniza- 
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tion [9] , finite-time synchronization [10] , etc; On the other hand, 

synchronization phenomena as a kind of collective behavior of the 

whole network has been attracted wildly attentions in many hot 

research fields such as secure communication [11] ; image process- 

ing [12] ; chemical and biological systems [13] . 

Time delay in practical systems is unavoidable, such as nuclear 

reactor, population dynamic models, aircraft stabilization, biologi- 

cal systems, chemical engineering systems, ship stabilization, and 

so on [14,15] . The existence of time delay can make system in- 

stable and degrade its performance. Now, considerable attentions 

have been devoted to the time-varying delay systems due to their 

extensive application in practical problems containing circuit the- 

ory, complex dynamical networks, automatic control etc. And, note 

that while signal propagation is sometimes instantaneous and can 

be modeled with discrete delays, it may also be distributed during 

a certain time period so that distributed delays are incorporated 

into the model [16,17] . On the other hand, in digital implementa- 

tions, signal transmission is a noisy process due to random fluctu- 

ations in electric devices or other environmental uncertainties [18] . 

That is, stochastic disturbances are important effects on dynamical 

behaviors of coupled delay system [19,20] . 

In the case where the whole network cannot synchronize by it- 

self, controllers should be designed and applied the force the net- 
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work of synchronize. Generally, a real network consists of large 

number of interconnected nodes, and it is usually impractical and 

even impossible to control all nodes with same dynamical trajec- 

tory. Obviously, pinning control concept is to design a few local 

controllers on a small percentage of nodes, so compared with fully 

equipped control strategy, pining control design is relatively eas- 

ily realized and more economical and convenient to implement 

by reducing the number of directly controlled nodes [21–24] . In 

addition, impulsive control is one of the important discontinu- 

ous control scheme from the viewpoint of engineering applica- 

tions. The main idea of impulsive control is to change the states 

of a system by the sudden jumps instantaneously [25–27] . So im- 

pulsive control may provide a much more highly efficient strat- 

egy for some cases in which the systems cannot endure contin- 

uous disturbance [28–30] . In [31] , authors investigated the prob- 

lem of pinning and impulsive synchronization between two com- 

plex dynamical networks with non-derivative and derivative cou- 

pling; Li et al. [32] studied the synchronization problem for a class 

of discrete-time complex networks with partial mixed impulsive 

effects; Liu et al. [33] considered the exponential synchronization 

problem of reaction-diffusion neural networks with time-varying 

delays subject to Dirichlet boundary conditions; Yi et al. [34] ana- 

lyzed the pinning synchronization of coupled neural networks with 

both current-state coupling and distributed-delay coupling via im- 

pulsive control. 

To the best of our knowledge, in most existence references, the 

authors often ignore a key question: How to balance the relation- 

ship between the number of pinning nodes and impulsive gain. 

Therefore, such quantitative analysis need to be described in the 

problem of pinning control. At the same time, the problem of syn- 

chronization for complex dynamical networks has not completely 

studied, especially for the stochastic networks and still has greatly 

space to be improved via some novel mathematical techniques. So, 

motivated by the above discussion, this paper aims to investigate 

the synchronization problem for a class of stochastic complex net- 

works with pinning hybrid control. The contribution of this paper 

can be summarized as follows: (1) in this paper, synchronization 

of a generalized stochastic nonlinear complex dynamical networks 

via pinning hybrid impulsive control is investigated, specially, the 

inner delay, discrete-delay and distributed-delay are considered in 

our model, and all of them are time-varying; (2) a novel adap- 

tive pinning control strategy is proposed, in which the pinning rule 

is defined as an index to determine the node selection, moreover, 

coupling strength parameters are estimated to guarantee them are 

not too large than needed; (3) by constructed a general hybrid 

controller, some novel criterions are derived to ensure global ex- 

ponential synchronization with large delay case; (4) it is the first 

time that the relationship between the number of pinning nodes 

and impulsive gain is further analyzed quantitatively. Finally, the 

effectiveness of the proposed methods is verified by two numeri- 

cal examples. 

The remainder of this paper is organized as follows: In 

Section 2 , we give a brief account of the model and some math- 

ematical preliminaries for subsequent uses. In Section 3 , we estab- 

lish some synchronization criteria for the proposed models with 

hybrid coupling delays and stochastic disturbance. we also show 

the effectiveness of the theoretical results with two numerical ex- 

amples in Section 4 . The conclusions are finally drawn in Section 5 . 

Notation: The notations are quite standard. Throughout this let- 

ter R 

n and R 

n ×m denote, respectively, the n-dimensioned Euclidean 

space and the set of all n × m real matrix. The notation X ≥ Y . (re- 

spective X > Y ) means that X and Y are symmetric matrices, and 

that X − Y is positive semi-definitive (respective positive definite). 

X + X T is denoted as He ( X ) for simplicity. I n is the n × n identity 

matrix. ‖ · ‖ is the Euclidean norm in R 

n . If A is a matrix , λmax ( A ) 

(respective λmin ( A )) means the largest (respective smallest) eigen- 

value of A . Moreover, let ( �, F , (F t ) t≥0 , P ) be a complete proba- 

bility space with a filtration. (F t ) t≥0 satisfies the usual conditions 

(i.e, the filtration contains all P -null sets and is right continuous). 

E { ·} stands for the mathematical expectation operator with respect 

to the given probability measure. Denote by L 2 
F 0 

( [ −τ, 0 ] : R 

n ) the 

family of all F 0 measurable C( [ −τ, 0 ] : R 

n ) -valued random vari- 

ables ϕ = { ϕ(s ) : −τ ≤ s ≤ 0 } such that sup −τ≤s ≤0 E ‖ ϕ ( s ) ‖ 2 < ∞ . 

The asterisk ∗ in a matrix is used to denote term that is induced by 

symmetry. Matrices, if not explicitly, specified, are assumed to have 

appropriate dimensions. Sometimes, the arguments of function will 

be omitted in the analysis when no confusion can be arised. 

2. Problem formulation and preliminaries 

Consider a class of stochastic complex networks described by 

the following model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dx i ( t ) = 

{
f ( t , x i ( t ) , x i ( t − τ1 ( t ) ) ) + C 1 

N ∑ 

j=1 

G 

( 1 ) 
i j 

�1 x j ( t ) 

+ C 2 
N ∑ 

j=1 

G 

( 2 ) 
i j 

�2 x j ( t − τ2 ( t ) ) 

+ η
N ∑ 

j=1 

G i j sign 

(
x j ( t ) − x i ( t ) 

)∥∥x j ( t ) − x i ( t ) 
∥∥σ

+ C 3 
N ∑ 

j=1 

G 

( 3 ) 
i j 

�3 

∫ t 
t −τ3 ( t ) 

x j ( s ) ds 

}
dt 

+ H i ( t, x i ( t ) , x i ( t − τ1 ( t ) ) , x i ( t − τ2 ( t ) ) ) dω i ( t ) , 
x i ( s ) = φi ( s ) , −τ ≤ s ≤ 0 , 

(1) 

where i = 1 , 2 , . . . , N, that means, networks (1) include N nodes. 

x i ( t ) = ( x i 1 ( t ) , x i 2 ( t ) , . . . , x in ( t ) ) 
T ∈ R 

n is the state vector of ith 

node. f ( t , x i ( t ) , x i ( t − τ1 ( t ) ) ) ∈ R 

n , f : [ 0 , + ∞ ) × R 

n × R 

n → R 

n is 

a continuous nonlinear vector-valued function, which describing 

the dynamical of isolated nodes. The positive constants C 1 , C 2 , 

C 3 are the coupling strengths, η > 0 is the coupling strength 

for the nonlinear term and 0 < σ < 1, �1 , �2 , �3 ∈ R 

n ×n are the 

inner connecting matrices. G 

( 1 ) = 

(
G 

( 1 ) 
i j 

)
N×N 

, G 

( 2 ) = 

(
G 

( 2 ) 
i j 

)
N×N 

and G 

( 3 ) = 

(
G 

( 3 ) 
i j 

)
N×N 

represent the coupling configuration of 

the networks, which are defined as follows: G 

( k ) 
i j 

≥ 0 ( i 	 = j ) and 

G 

( k ) 
ii 

= −
N ∑ 

j =1 , j 	 = i 
G 

( k ) 
i j 

, k = 1 , 2 , 3 , G = 

(
G i j 

)
N×N 

expresses coupling 

weights between nodes: if there exist a connection between node 

i and node j , then G i j = G ji > 0 , otherwise G i j = G ji = 0 ( i 	 = j ) , 

G ii = 0 to avoid self-loops for all i = 1 , 2 , . . . , N. The time- 

varying delays τ 1 ( t ), τ 2 ( t ) and τ 3 ( t ) satisfy: 0 ≤ τ 1 ( t ), τ 2 ( t ), 

τ 3 ( t ) ≤ τ , ˙ τ1 ( t ) ≤ ˜ τ1 < 1 , ˙ τ2 ( t ) ≤ ˜ τ2 < 1 , in which τ 1 ( t ) is the 

inner delay, τ 2 ( t ) is discrete-time delay and τ 3 ( t ) is the dis- 

tributed delay of coupling terms, respectively. sign 
(
x j ( t ) − x i ( t ) 

)
= 

diag 
(

sign 
(
x j1 ( t ) − x i 1 ( t ) 

)
. . . sign 

(
x jn ( t ) − x in ( t ) 

) )
, ∥∥x j ( t ) − x i ( t ) 

∥∥σ ∈ R 

n . The initial value φ of system (1) is given as 

follows: 

φ = ( φ1 , φ2 , . . . , φN ) 
T ∈ C ( [ −τ, 0 ] , R 

n ) . 

H i ( t, x i ( t ) , x i ( t − τ1 ( t ) ) , x i ( t − τ2 ( t ) ) ) ∈ R 

n ×n represents the per- 

turbation strength, and ω i ( t ) ∈ R 

n is a bounded vector-form 

Weiner process. 

To realize the synchronization between two coupling stochas- 

tic nonlinear complex networks with mixed delay terms, we will 

introduce a response system in the form of: {
d y i ( t ) = { f ( t , y i ( t ) , y i ( t − τ1 ( t ) ) ) + U ( t ) } d t, 
y i ( s ) = ϕ i ( s ) , − τ ≤ s ≤ 0 i = 1 , 2 , . . . , N, 

(2) 



Download English Version:

https://daneshyari.com/en/article/8253385

Download Persian Version:

https://daneshyari.com/article/8253385

Daneshyari.com

https://daneshyari.com/en/article/8253385
https://daneshyari.com/article/8253385
https://daneshyari.com

