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a b s t r a c t 

This paper focuses on the dynamic behavior of phytoplankton–zooplankton system with cell size and 

time delay. Remarkably, the existence of cell size and time delay make the dynamic behavior of the 

system more close to the real-world situation, essentially different from those in the existing related 

literature. To analyze the dynamic behavior of the system, the positiveness and boundedness of the so- 

lution are first derived. Then, the asymptotic stability of the coexistent equilibrium and Hopf bifurcation 

are studied by analyzing the associated characteristic equation. Once more, the direction of Hopf bifur- 

cation and the stability of bifurcated periodic solution are determined. Finally, the theoretical results are 

illustrated by a numerical example. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the development of society and economy, the marine en- 

vironment pollution, such as harmful algal bloom and overfishing, 

have seriously damaged the ecological balance of phytoplankton–

zooplankton system which is an important part of the marine 

ecosystem. Particularly, the harmful algal blooms produced by phy- 

toplankton have seriously affected the marine ecology, marine 

economy and marine environment in most areas. In addition to bi- 

ological intrinsic discipline and growth environment, the growth 

and reproduction of phytoplankton are related with zooplankton 

which is the natural enemy of phytoplankton [1] . To understand 

the mechanism of harmful algal bloom, it is necessary to study the 

dynamic behavior of phytoplankton–zooplankton system. Generally 

speaking, there are two approaches to study the dynamic behavior 

of phytoplankton–zooplankton system: One is experimental analy- 

sis, the other is theoretical analysis. Based on experimental analysis 

results, more and more biomathematical models have been con- 

structed for theoretical analysis [2,3] . Additionally, the dynamical 

behavior of phytoplankton–zooplankton system with various bio- 

logical factors, especially stability, bifurcation and chaos, have been 

extensively researched [4–8] . 

To recognize the relationship among species in phytoplankton–

zooplankton system, many functional response functions have 

been developed, such as Holling type [9–11] , Ivlev type 
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[12] , ratio-dependent type [13] , Crowley–Martin type [14] , 

Beddington–DeAngelis type [15,16] and Hassell–Varley type 

[17] . Roughly speaking, these functional response functions can 

be classified as prey dependent type and predator dependent 

type. In contrast to prey dependent type, the predator dependent 

one is more capable of reflecting the actual relationship among 

species in phytoplankton–zooplankton system and more com- 

plicated from the viewpoint of mathematics (see, e.g., [14–17] ). 

The Beddington–DeAngelis type functional response function is 

a predator dependent one, which is widely used and practical. 

Actually, based on the experimental data, Skalski and Gilliam 

[18] showed that the biological characteristic of Beddington–

DeAngelis type functional response function is not only more 

consistent with the actual data but also overcomes the singular 

phenomenon in low density state. 

Inspired by the recent works [11,16,19] , this paper investi- 

gates the dynamic behavior of phytoplankton–zooplankton sys- 

tem with cell size and time delay. Remarkably, the maximum 

growth rate depends on the cell size for phytoplankton, and we 

use Beddington–DeAngelis type functional response function to de- 

scribe the relationship between phytoplankton and zooplankton, 

which make the system more comprehensive and accurate to de- 

scribe the real-world situation, essentially different from those in 

the existing related literature [14,20,21] . Since the cell size is an 

important feature of phytoplankton–zooplankton system, there are 

many works on this issue (see, e.g., [19,22,23] ). However, these 

works are only attention to the experimental analysis of the sys- 

tem instead of theoretical analysis. To analyze the dynamic behav- 

ior of the system, we first derive the positiveness and boundedness 
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of the solution, and then study the asymptotic stability of the coex- 

istent equilibrium and Hopf bifurcation by analyzing the associated 

characteristic equation. Finally, we determine the direction of the 

Hopf bifurcation and the stability of the bifurcated periodic solu- 

tion. 

The remainder of this paper is organized as follows. 

Section 2 formulates the phytoplankton-zooplankton system. 

Section 3 analyzes the stability of equilibrium and the exis- 

tence of Hopf bifurcation. Section 4 determines the direction of 

Hopf bifurcation and the stability of bifurcated periodic solution. 

Section 5 gives an example to illustrate the theoretical results. 

Finally, Section 6 addresses some conclusions. 

2. System model and problem formulation 

In this paper, we explore the effect of body size on dynamic 

behavior analysis of phytoplankton–zooplankton system. Suppose 

the phytoplankton population are characterized by population den- 

sity u 1 and cell size x and the zooplankton one are represented 

by u 2 and y . As a first attempt to study the effect of body-size- 

dependent population by theoretical analysis, we do not consider 

how other abiotic variables influence phytoplankton and zooplank- 

ton growth. Therefore, on the basis of the above mentioned, we 

investigate the following phytoplankton–zooplankton system with 

cell size and time delay: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ u 1 = u 1 

(
r 1 (x ) − s (x ) − α1 u 1 − C(x, y ) u 2 

a + u 1 + bu 2 

)
, 

˙ u 2 = −r 2 u 2 + 

C(x, y ) u 1 (t − τ ) u 2 (t − τ ) 

a + u 1 (t − τ ) + bu 2 (t − τ ) 
, 

u 1 (θ ) = ψ 1 (θ ) > 0 , u 2 (θ ) = ψ 2 (θ ) > 0 , θ ∈ [ −τ, 0] , 

(1) 

where ψ 1 , ψ 2 are initial conditions; τ > 0 denotes time delay for 

gestation of zooplankton; s ( x ) is the sinking rate and s (x ) = α2 x 
2 

[19] ( r 1 ( x ) > s ( x )) with sinking rate coefficient α2 ; α1 represents 

the crowding effect parameter which is caused by the intraspe- 

cific competition with peers of the same species. The function 

C(x, y ) u 1 
a + u 1 + bu 2 

is the Beddington–DeAngelis functional response; the 

parameter a is a measure of the abundance of phytoplankton and 

zooplankton relative to the environment in which they interact 

and b stands for zooplankton interference [24] ; C ( x, y ) is the zoo- 

plankton consumption rate. In addition, empirical evidence sug- 

gests that zooplankton consumption rate is maximum when zoo- 

plankton feed on particles with an optimal phytoplankton size ra- 

tio [25] . Thus, we formulate C ( x, y ) as 

C(x, y ) = C m 

exp 

(
− 1 

λ
(x − κy ) 2 

)
, (2) 

with consumption rate coefficient λ, optimal predator-prey ratio κ
and maximum consumption rate C m 

. In the following work, we 

take the maximum consumption value, that is C(x, y ) = C m 

with 

x = κy . r 2 is the natural mortality rate for zooplankton popula- 

tion; r 1 ( x ) describes the maximum phytoplankton growth rate, and 

the empirical observations [26–28] and resource uptake kinetics 

[29] find a relationship between growth rate and cell size, that is 

r 1 (x ) = 

x 

c 1 x 2 + c 2 x + c 3 
, (3) 

with constants c 1 , c 2 and c 3 . 

In the following, it will investigate the dynamic behavior of sys- 

tem (1) with (2) and (3) in details by considering the effect of time 

delay and cell size. 

3. Stability of equilibrium and existence of Hopf bifurcation 

This section studies the local and global stability of coexisting 

equilibrium and the existence of Hopf bifurcation. Note that the 

positiveness and boundedness of the solution are essential prereq- 

uisites in dynamic behavior analysis of phytoplankton–zooplankton 

system. Therefore, we first give the following lemma. 

Lemma 1. Consider system (1) with (2) , (3) and initial values 

u 1 ( t 0 ) > 0, u 2 ( t 0 ) > 0 . Then, the solution ( u 1 ( t ), u 2 ( t )) of system (1) is 

positive and uniformly bounded. 

Proof. Due to the right-hand side of system (1) is continuous and 

smooth on R 

2 + = { (u 1 , u 2 ) : u 1 , u 2 ≥ 0 } , and initial values u 1 ( t 0 ) > 0, 

u 2 ( t 0 ) > 0, we have 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u 1 (t) = u 1 (t 0 ) e 

∫ t 
t 0 

( 
x 

c 1 x 2 + c 2 x + c 3 
−α2 x 

2 −α1 u 1 (s ) −
C m u 2 (s ) 

a + u 1 (s ) + bu 2 (s ) 

) 
d s 

> 0 , 

u 2 (t) = u 2 (t 0 ) e 

∫ t 
t 0 

( 
C m u 1 (s − τ ) u 2 (s − τ ) 

u 2 ( s )( a + u 1 (s − τ ) + bu 2 (s − τ )) 
−r 2 

) 
d s 

> 0 . 

Using the positiveness of the solution, we have 

˙ u 1 ≤ u 1 

(
x 

c 1 x 2 + c 2 x + c 3 
− α2 x 

2 − α1 u 1 

)
. 

The standard comparison argument shows that 

lim 

t→∞ 

sup u 1 (t) ≤ x 

α1 (c 1 x 2 + c 2 x + c 3 ) 
− α2 

α1 

x 2 . 

Let ζ (t) = u 1 (t − τ ) + u 2 (t) . Along the solution of system (1) , we 

get 

d ζ ( t ) 

d t 
+ lζ ( t ) = 

˙ u 1 ( t − τ ) + 

˙ u 2 ( t ) + u 1 ( t − τ ) + lu 2 ( t ) 

= 

xu 1 ( t − τ ) 

c 1 x 2 + c 2 x + c 3 
− α2 x 

2 u 1 ( t − τ ) − α1 u 

2 
1 ( t − τ ) 

− r 2 u 2 ( t ) + lu 1 ( t − τ ) + lu 2 ( t ) . 

Define l = r 2 . Then, we have 

d ζ ( t ) 

d t 
+ lζ ( t ) 

= u 1 ( t − τ ) 
(

x 
c 1 x 2 + c 2 x + c 3 − α2 x 

2 + r 2 − α1 u 1 ( t − τ ) 
)

≤
(

x 

c 1 x 
2 + c 2 x + c 3 

−α2 x 
2 + r 2 

)2 

4 α1 
, 

and 

0 < ζ (t) ≤
(

x 
c 1 x 2 + c 2 x + c 3 − α2 x 

2 + r 2 
)2 

4 α1 r 2 

(
1 − e −r 2 t 

)
+ ζ (0) e −r 2 t . 

Therefore, we arrive at 

0 < lim 

t→∞ 

ζ (t) ≤
(

x 
c 1 x 2 + c 2 x + c 3 − α2 x 

2 + r 2 
)2 

4 α1 r 2 
. 

By this and noting ζ (t) = u 1 (t − τ ) + u 2 (t) , it follows that the so- 

lution of system (1) is confined in the following region: 

B = 

{ 

( u 1 , u 2 ) ∈ R 

2 
+ : 0 < u 1 ≤ x 

α1 

(
c 1 x 2 + c 2 x + c 3 

) − α2 

α1 

x 2 , 

0 < u 1 + u 2 ≤
(

x 

c 1 x 
2 + c 2 x + c 3 

−α2 x 
2 + r 2 

)2 

4 α1 r 2 

} 

. 

�

Through simple calculations, it is easy to see that system 

(1) with (2), (3) has two boundary equilibrium E 0 = (0 , 0) , 

E 1 = 

(
x 

α1 (c 1 x 
2 + c 2 x + c 3 ) 

− α2 x 
2 

α1 
, 0 

)
and a coexistent equilibrium E ∗ = 

(u ∗
1 
, u ∗

2 
) when the condition 
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