
Chaos, Solitons and Fractals 114 (2018) 408–414 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Crossover phenomena in growth pattern of social contagions with 

restricted contact 

Yu-Xiao Zhu 

a , b , Yan-Yan Cao c , Ting Chen d , Xiao-Yan Qiu e , Wei Wang f , g , ∗, Rui Hou 

a , ∗

a School of Management, Guangdong University of Technology, Guangzhou 510520, China 
b School of Big Data and Strategy, Guangdong University of Technology, Guangzhou 510520, China 
c Chipintelli Technology Co., Ltd., Chengdu 610 0 0 0, China 
d Center for Cybersecurity, University of Electronic Science and Technology of China, Chengdu 611731, China 
e School of Economics and Management, Shanghai Institute of Technology, 100 Haiquan Road, Fengxian District, Shanghai 201418, China 
f Cybersecurity Research Institute, Sichuan University, Chengdu 610065, China 
g Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China 

a r t i c l e i n f o 

Article history: 

Received 27 December 2017 

Revised 18 April 2018 

Accepted 10 June 2018 

Keywords: 

Limited contact capacity 

Social contagions 

non-Markovian model 

Crossover phenomenon 

a b s t r a c t 

Considering the phenomenon that each individual has its limited contact capacity due to inelastic re- 

sources (i.e., time and energy), we propose one non-Markovian model to investigate the effects of contact 

capacity on social contagions, in which each adopted individual can only contact and transmit the infor- 

mation to certain number of neighbors. A heterogeneous edge-based compartmental approach is applied 

to analyze the social contagion on strongly heterogenous networks with skewed degree distribution, and 

the analytical results agree well with simulations. We find that either enlarging the contact capacity or 

decreasing adoption threshold makes the network more fragile to behavior spreading. Interestingly, we 

find that both the continuous and discontinuous dependence of the final adoption size on the effective 

information transmission probability can arise. There is a crossover phenomenon between the two types 

of dependence. More specifically, the crossover phenomenon can be induced by changing any one of cer- 

tain parameters, i.e., the average degree, the fraction of initial seeds and adoption threshold. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Network provides a useful analytical framework for studying 

lots of social phenomena, since the network of people—social 

networks—plays an important role in many social phenomena 

[1–6] . Spreading processes, such as epidemic spreading [2,7–12] , 

diffusion of rumors [13–15] and diffusion of innovations [16–21] , 

are three important dynamics on social networks. Basically, there 

are mainly two classes of contagions: simple contagions and com- 

plex contagions. Simple contagions refer to contagions for which a 

single activated source can be sufficient for transmission [22] . For 

example, the infection transmission of the classical SIS [23] and SIR 

[24] models, which can be described by using an infection rate ap- 

proach. Reinforcement effect [2,25,26] , which means that more ex- 

posures from neighbors can drastically increase the adoption prob- 

ability, have been observed in many spreadings (i.e., adoption of a 

new health behavior [27,28] , adoptions of Facebook [29] and Skype 

[30] ). Different with sim ple contagions, com plex contagions ref er 
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the transmission requires contact with multiple sources of activa- 

tion [22] , which are always described by using the threshold driven 

approach. For example, the famous linear threshold model [25,31] , 

where an individual will adopt the behavior once the current frac- 

tion of his/her adopted neighbors is larger than a static thresh- 

old. Clearly, the linear threshold model is one deterministic model 

once we fixed the network structure and initial seeds. In addition, 

there are some spreading models incorporated the reinforcement 

effect in another way: whether an individual adopts the behavior 

depends on the number of cumulative behavioral information re- 

ceived [18,21,32,33] . Clearly, the dynamics are non-Markovian pro- 

cesses in this case. 

Recently, some empirical analysis demonstrated that individ- 

uals always exhibit limited contact capacity due to the limition 

of inelastic resources (e.g., time, funds, and energy) [34–37] . For 

example, Liljeros et al. revealed that individuals can only have 

limited sexual partners in a very short time due to the limitation 

of physiology and morality [38,39] ; Golder et al. found that users 

always communicate with a small number of people even though 

they have lots of friends on Facebook [40] ; Perra et al. found 

that scientists only exchange knowledge with a fraction of his/her 

cooperators in the scientific cooperation networks [41,42] . Some 
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researchers have studied the effects of contact capacity on Marko- 

vian dynamics (i.e., epidemic spreading) [43–45] , and revealed 

that limited contact capacity will increase the epidemic outbreak 

threshold [44] . Clearly, the limited contact capacity will hinder 

the transmission of the behavior/information, and thus affects the 

dynamics of social contagions. Thereafter, some related researchers 

begun to study the effects of contact capacity on social contagions. 

For instance, Wang et al. proposed one non-Markovian behavior 

spreading model with limited contact capacity and identical adop- 

tion threshold, then further addressed how the contact capacity 

affects the behavior spreading dynamics [20] . Unfortunately, the 

social contagion model proposed by Wang et al. consider all indi- 

viduals need same pieces of cumulative behavioral information to 

get adopted, which neglect the personality of different individuals 

[20] . In fact, each individual always need different pieces of cumu- 

lative behavioral information to get adopted due to its personality 

and character. Thus it is important to ask how the limited contact 

capacity, personalized adoption threshold, along with degree dis- 

tribution and other factors, affects various dynamics on networks. 

In this paper, we introduce one new social contagion model 

with limited contact capacity, in which the adoption threshold 

of each individual varies with its degree, and investigate growth 

pattern of social contagions with restricted contact. We find that 

(i) increasing the contact capacity enhances the final behavior 

adoption size; (ii) increasing adoption threshold suppresses the fi- 

nal behavior adoption size; (iii) by changing one of certain pa- 

rameters (i.e., the average degree, the fraction of initial seeds and 

adoption threshold), the crossover phenomenon is observed, which 

means that the dependence of the final adoption size on the effec- 

tive information transmission probability can changed from being 

continuous to being discontinuous and (iv) some parameters, like 

the heterogeneity of degree distribution and contact capacity, will 

not change the dependence type of the final adoption size on the 

information transmission probability. 

2. Complex contagion model and network 

We first introduce an complex contagion model that takes lim- 

ited contact capacity into account. Our model builds on a sim- 

ple, generalized non-Markovian contagion model that can describe 

both simple and complex contagions [18–20] . In particular, an in- 

dividual can be in one of three possible states: susceptible (S), 

adopted (A), or recovered (R). In the susceptible state, an individual 

does not adopt the information. In the adopted state, an individ- 

ual adopts the information and tries to transmit the information 

to his/her selected neighbors. In the recovered state, an individual 

loses interest in the information and will not transmit the informa- 

tion any more. Each individual v has a state of integer awareness 

value m which denotes the exact received pieces of cumulative in- 

formation. An individual adopts and begins to transmit the behavior 

or information (contagion) when m / k ≥β , where k is the degree 

of individual v . Individuals with m / k < β do not affect the others. 

That’s to say, individuals with degree k hold an adoption threshold 

� βk � . Clearly, larger degree individual holds higher value of adop- 

tion threshold. 

In our networks, we initially select a small fraction ρ0 of nodes 

randomly and designate them as in the adopted state ( seeds ). We 

set the awareness of the remaining nodes to be 0 and let them 

be at the susceptible state. That’s to say, all susceptible individu- 

als do not know any information about this information. We de- 

note the function f ( k ) as the contact capacity of an adopted indi- 

vidual v with k neighbors. The larger the value of f ( k ), the more 

neighbors can receive the information from him/her. If f ( k ) < k , the 

contact capacity of individual v is f ( k ). If the contact capacity of 

v is larger than his/her degree [i.e., f ( k ) ≥ k ], we let he/she trans- 

mit information to all neighbors [i.e., f (k ) = k ]. At each time step, 

each adopted individual v with k neighbors first randomly chooses 

a number of f ( k ) neighbors due to the limited contact capacity, 

and tries to transmit the information to each selected suscepti- 

ble neighbor u with probability λ. When successful, the awareness 

value of u will increase by 1, and the information cannot be trans- 

mitted between u and v in the following spreading process (i.e., re- 

dundant information transmission on the edge is forbidden). Note 

that, each individual can remember the cumulative pieces of non- 

redundant information that received from his/her neighbors in our 

model, which makes the contagion processes be non-Markovian. 

Also, each adopted individual may become recovered with proba- 

bility γ , considering the fact that people may lose interest in the 

contagion after a while and will not spread it any more. The in- 

dividuals will remain in recovered state for all subsequent times 

once it is recovered. The dynamics terminates once all adopted 

individuals become recovered. In this model, we applied the syn- 

chronous updating method to renew the states of individuals [46] , 

thus the time evolves discretely in this case. 

For simplicity, we study the social dynamics on two kinds of 

uncorrelated random graphs: Erdös-Rényi model(ER) [47] and un- 

correlated configuration model(UCM) [48] . We realize UCM net- 

works by generalizing the configuration model [48] . Consider one 

network with N nodes and M edges. We create a graph using the 

classical configuration model, where the degree distribution fol- 

lows p(k ) ∼ k −αk ( 3 ≤ k i ≤
√ 

N ). αk controls the heterogeneity of 

the degree distribution [2] , heterogenous distribution is commonly 

used to describe highly skewed distribution. 

3. Heterogeneous edge-based compartmental theory 

Inspired by previous related works [49–51] , we develop one 

heterogeneous edge-based compartmental theory to describe the 

complex contagion mentioned in Section 2 . This theory is based 

on the assumption that information spreads on uncorrelated and 

large sparse networks. In this proposed complex contagion model, 

whether one individual adopts the information or not is depen- 

dent on the cumulative pieces of information he/she ever received, 

which makes the contagion processes be non-Markovian. Here we 

use variables S ( t ), A ( t ) and R ( t ) to denote densities of the suscepti- 

ble, adopted, and recovered nodes at time t . Basically, two sequen- 

tial aspects are needed to constitute one effective spreading of an 

edge. Firstly, an edge is randomly selected with probability f ( k ′ )/ k ′ , 
where k ′ is the degree of adopted individual v ; Secondly, the infor- 

mation is transmitted through the selected edge with probability 

λ. Thus, the effective spreading probability of an edge for individ- 

ual v is λf ( k ′ )/ k ′ . 
According to the basic idea of the cavity theory [52,53] , we let 

individual u in the cavity state. That is to say, individual u can re- 

ceive information from his/her neighbors while cannot transmit in- 

formation to them. Denoting θk ′ (t) as the probability that an indi- 

vidual v with degree k ′ has not transmitted the information to u 

along a randomly selected edge until time t . Note that, the adopted 

individuals are generally with different degrees in heterogeneous 

networks, so the values of θk ′ defined based on edges are heteroge- 

neous, which is named heterogeneous edge-based compartmental 

theory. 

For all possible degrees of individual v , the average probabil- 

ity that individual u has not received the information from his/her 

neighbors until time t is 

θ (t) = 

∑ 

k ′ =0 

k ′ P (k ′ ) 
〈 k 〉 θk ′ (t) , (1) 

where 〈 k 〉 is the mean degree, k ′ P ( k ′ )/ 〈 k 〉 denotes the probability 

that the existing of an edge between u and v with degree k ′ in un- 

correlated network. Clearly, the probability that individual u with 
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