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a b s t r a c t 

Cellular automata are fully-discrete dynamical systems with global behaviour depending upon their lo- 

cally specified state transitions. They have been extensively studied as models of complex systems as well 

as objects of mathematical and computational interest. Classically, the local rule of a cellular automaton 

is iterated synchronously over the entire configuration. However, the question of how asynchronous up- 

dates change the behaviour of a cellular automaton has become a major issue in recent years. Here, we 

analyse the elementary cellular automata rule space in terms of how many different one-step trajecto- 

ries a rule would entail when taking into account all possible deterministic ways of updating the rule, 

for one time step, over all possible initial configurations. More precisely, we provide a characterisation of 

the elementary cellular automata, by means of their one-step maximum sensitivity to all possible update 

schedules, that is, the property that any change in the update schedule causes the rule’s one-step trajec- 

tories also to change after one iteration. Although the one-step maximum sensitivity does not imply that 

the remainder of the time-evolutions will be distinct, it is a necessary condition for that. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cellular automata (CAs) are locally-defined dynamical systems, 

discrete with respect to time, space and state variables. They have 

been studied both from the point of view of their mathematical 

and computational properties as well as systems capable of simu- 

lating real-world phenomena [1] , such as disease spread [2] , urban 

growth [3] and fluid dynamics [4] . Even with simply defined local 

interaction rules, cellular automata may be capable of displaying 

arbitrarily complex global emergent behaviour; well-known binary 

cellular automata rules such as The Game of Life [5] and elementary 

cellular automaton Rule 110 , are known to be capable of simulating 

a Turing machine [6] . 

Classically, the time-evolution of a configuration under a cellu- 

lar automaton local rule is given by synchronously iterating such 

a rule over the entire configuration. However, the study of the ef- 

fects of allowing asynchronous updates has been gaining attention 

in recent years. By taking into account additional update schemes 

further to the synchronous, the rules typically unveil a richer be- 

havioural set, both in terms of their possible dynamics and capa- 

bilities of problem-solving as well as of simulating real-world phe- 
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nomena; see [7] for a comprehensive review on asynchronism and 

how it compares to the synchronous case. 

From the viewpoint of simulating real-world complex systems, 

it is usually considered that they are more naturally simulated by 

asynchronous cellular automata rather than synchronous ones [8] , 

since they generally result from the parts of the system interacting 

asynchronously based upon action and reaction. 

On the other hand, from the computational point of view, some 

dynamical properties of certain cellular automata rules are par- 

tially due to the synchronism rather than due to only the rule it- 

self [9,10] , what leads to the natural question of which might be 

the new capabilities of a rule when allowing asynchronous update 

schedules [11] . 

In this context, a naturally relevant question is to understand 

how changes in the way a rule is updated over the set of config- 

urations of a given length affects, both quantitatively and qualita- 

tively, its dynamical behaviour. Aracena et al. [12] have construc- 

tively shown that it is possible to partition the set of possible up- 

dates into equivalence classes. The quantity of such classes may 

be significantly smaller than the number of individual updates in 

many situations, thus rendering comprehensive studies of all pos- 

sible updates more tractable in these situations. 

One particular way to study asynchronous binary cellular au- 

tomata is to use the more general framework of Boolean automata 
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networks (BANs), where the asynchronism is coded in the struc- 

ture of labeled digraphs named interaction digraphs . Many dynami- 

cal properties, such as the quantification of fixed points [13,14] and 

the existence of limit-cycles [15] , have been studied in such a 

context. 

Here, we address the question of how changing the update 

schedule affects the number of different dynamics of a cellular au- 

tomaton, after one iteration of the rule. More precisely, the term 

dynamics here refer to the set of pairs of configurations and their 

respective image under the CA rule under a given update sched- 

ule. In order to do so, we provide a way to compute how many in- 

dependent update schedules do exist for configurations of a given 

length, establish the notion of one-step update schedule sensitivity 

and give necessary and sufficient conditions for an elementary cel- 

lular automaton to have maximum one-step sensitivity to changes 

in updates. We constrain to the well studied family of elementary 

cellular automata, where each cell can take on two possible states 

and the state transition of every cell of an automaton depends 

upon the states of the cell itself and of its immediate neighbours to 

the left and to the right. We understand that our short-range, one- 

iteration based study is a key step towards better understanding 

the longer-range dynamical behaviour of one-dimensional cellular 

automata, possibly even their limit behaviours. 

In order to know how much the dynamics of a rule varies for 

different update schedules, the notion of update schedule sensitivity 

is defined. We believe that such a measure may open new possibil- 

ities to study classical problems in the CA literature, previously ad- 

dressed only in the synchronous update schedule; for instance, the 

density classification task , for which its has been shown that no sin- 

gle CA rule is able to solve it under synchronous update schedule 

(see [16] for a survey on this problem). The question of whether 

or not there might be a solution for some asynchronous update 

schedule is still an open question. Naturally, CAs with many differ- 

ent dynamics due to distinct update schedules, offers many more 

possibilities to tackle the problem. 

Basically, two update schedules are said to be equivalent if for 

any CA rule and any configuration, the image of the configuration 

generated by iterating the CA rule under the first update sched- 

ule is the same as the one obtained by iterating the CA rule un- 

der the second update schedule. Also, a CA rule is said to have 

maximum (one-step) update schedule sensitivity when, for any two 

non-equivalent update schedules, there will be a configuration for 

which its image will be distinct for each update schedule. This will 

be addressed more formally in Section 4 , but it is worth showing 

how this one-step property may affect the global behaviour of the 

rule along time. 

First of all, it is worth noticing that even if the images of a con- 

figuration under distinct update schedules may differ in one iter- 

ation of the rule, it is possible that after a number iterations the 

trajectories become the same. 

However, the one-step difference is a necessary condition in or- 

der for the trajectories of a configuration under distinct update 

schedules to be distinct, hence checking a rule for maximum one- 

step update schedule sensitivity is, in reality, telling whether or not 

a rule is capable of displaying distinct time-evolutions for small 

changes in a given update schedule. 

In order to illustrate the above possibilities, Fig. 1 shows the 

difference of time-evolutions of ECA rules 110 (well-known for be- 

ing Turing-universal for synchronous update) and 232 (the major- 

ity rule) for two almost equal update schedules: the synchronous 

one (left) and the one in which the leftmost cell is updated be- 

fore all othere cells (middle), followed by the difference of the 

time-evolutions (right). Therefore, as said above, maximum update 

schedule sensitivity is not sufficient, but it is necessary, in order 

for a rule to present long-term differences in the time-evolution in 

response for small changes in the update schedule. 

Fig. 1. Time-evolution ECA rules 110 and 232 for the synchronous update sched- 

ule (left) and an asynchronous update schedule where the leftmost cell is updated 

before the other cells (middle), where time flows downwards and white and black 

cells represent cells in state 0 and 1, respectively. A one-step difference in the time- 

evolutions may (rule 110) or may not (rule 232) result in distinct trajectories after 

a given number of time-steps: the diagrams on the right represent the differences 

between each pair of time-evolutions (right). 

The paper is organised as follows: the next section provides ba- 

sic definitions regarding cellular automata, general update sched- 

ules and update digraphs. Section 3 summarises preliminary re- 

sults regarding the maximum number of distinct updates sched- 

ules and of the distinct dynamics for configurations of a given 

length. As follows, Section 4 defines the notion one-step sensitivity 

to the update schedules, and Section 5 then gives a characterisa- 

tion in terms of the local rules of the elementary cellular automata 

that display maximum one-step sensitivity to all possible update 

schedules. Finally, concluding remarks are made in Section 6 . 

2. Basic definitions 

2.1. Cellular automata, configurations and dynamical equivalence 

A cellular automaton (CA) is a quadruple ( S, N, f, d ), where S = 

{ 0 , 1 , · · · , k − 1 } is the state set , N = ( � n 1 , � n 2 , · · · , � n m 

) ∈ (Z 

d ) m is the 

neighbourhood vector , f : S m −→ S is the local function (or local rule ) 

and d ∈ Z + is the dimension . In particular, one-dimensional binary 

CAs have S = { 0 , 1 } , d = 1 and, given r ∈ { m 

2 : m ∈ Z + } , the rule 

is said to be radius - r when N = (−� r � , −� r � + 1 , · · · , 0 , · · · , � r� −
1 , � r� ) . 

An elementary cellular automaton (ECA) is a radius-1, binary, 

one-dimensional cellular automaton. There are 256 ECAs arising 

from the distinct possible local rules f : { 0 , 1 } 3 −→ { 0 , 1 } ; we re- 

fer to the set of all ECA rules by F . Each ECA local rule f may be 

identified by its Wolfram number [17] given by 

W ( f ) = 

∑ 

(q 1 ,q 2 ,q 3 ) ∈{ 0 , 1 } 3 
f (q 1 , q 2 , q 3 )2 

(2 2 q 1 +2 1 q 2 +2 0 q 3 ) 

A (periodic) configuration of length L is a function c : Z L −→ 

{ 0 , 1 } where Z L denotes the set of integers modulo L . Each in- 

dex i ∈ Z L of a configuration is named a cell and c ( i ), denoted by 

c i from now on, is the state of cell i . For the ECA rules, the vec- 

tor (i − 1 , i, i + 1) is the neighbourhood of cell i and cells i − 1 , i 

and i + 1 are the neighbours of cell i . Here we denote the vector 

(c i −1 , c i , c i +1 ) by [ c i ]. We denote the set of all periodic configura- 

tions of length L by C L and a periodic configuration of length L 

simply by the vector ( c 1 , c 2 , ���, c L ) characterising c (1) to c ( L ). 

Given a local ECA rule f , it induces a synchronous global func- 

tion (or synchronous global rule) F : C L −→ C L , such that (F (c)) i = 

f (c i −1 , c i , c i +1 ) = f ([ c i ]) . That is, the synchronous global rule re- 

sults from applying the local rule f to the neighbourhood of each 

cell i , synchronously. 
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