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1. Introduction 

Iterated function system theory is one of the main branches 

of fractal geometry which has numerous applications such as im- 

age compression [3] , signal modeling and wavelets [18,24] , neu- 

ral networks [22] , chaotic systems [1,2] . An iterated function sys- 

tem (abbreviated as IFS) on a complete metric space X is a finite 

collection of contractive mappings { ϕ i : X → X} N 
i =1 

with contrac- 

tivity factors 0 ≤λi < 1. By the Hutchinson theorem [13] , one can 

state that there exists a fixed point of the operator � : H(X ) → 

H(X ) , �(U) = 

⋃ N 
i =1 ϕ i (U) , where H(X ) denotes the complete met- 

ric space of nonempty compact subsets of X . This fixed point A 

is called the attractor of the IFS. Moreover, lim n →∞ 

�n (U) = A for 

any compact set U ∈ H(X ) . 

Determining the smallest disk that encloses the attractor is 

needed in various fields such as approximation of the attractors 

(many algorithms require a certain information of a disk bound- 

ing the attractor) [12] , numerical multifractal analysis which can 

be used for understanding the structure of complex networks 

[9,14,17,21] , and more accurate computation of box-counting di- 

mension the calculation techniques of which are still in develop- 

ment [2,6,10,15] . 

In the previous works, there are several algorithms to obtain 

the smallest enclosing disk. In 1991, Hart and DeFanti [11] pro- 

posed an algorithm to produce a disk that covers the attractor of 
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an IFS { ϕ i } N i =1 
. Starting from an arbitrary disk D 0 , a sequence of 

disks ( D n ) is determined iteratively, where the center of each D n 

is c n = 

1 

K 

∑ K 

i =1 
ϕ i (c n −1 ) with radius r n = max 

i =1 , ... ,K 
{| ϕ i (c n −1 ) − c n | + 

diam (ϕ i (D n −1 )) / 2 } . Although it is not guaranteed that the disk D n 

includes the attractor, the limit disk contains it. Dubuc and Hamza- 

oui [7] defined a radius function depending on a point in R 

d , 

which will be the center, so that the disk covers the attractor. Also, 

they proved the existence of the global minimum of this func- 

tion and gave an upper bound for it. A different approach can be 

found in [4] : instead of covering the attractor with only one disk, 

Canright used a collection of disks D i with centers x i (the fixed 

points of maps) and the radii satisfying r i = λi max 
i � = j 

(| x i − x j | + r j ) . 

The union of the disks in the collection, called the envelope, con- 

tains the attractor, i.e. A ⊂ ∪ 

N 
i =1 

D i . Edalat et al. [8] introduced an 

algorithm with an approach similar to [7] . To find the optimal 

center that minimizes the radius of the disk, they used the Lan- 

grange multipliers method. In [20] , Rice improved Hart and De- 

Fanti’s approach to obtain the disk with minimal radius by imple- 

menting various algorithms such as Downhill Simplex method. An- 

other related work with the problem of enclosing the attractor is 

[5] , Chu and Chen used a bounding box to enclose A instead of 

using bounding disk. 

In [16] , Martyn developed a novel algorithm to find the smallest 

enclosing disk of an IFS attractor. The methods mentioned above 

have a lack of accuracy in some cases (e.g. fern) but Martyn’s ap- 

proach allows one to approximate the smallest disk at any preci- 

sion. In the paper, an initial axis-aligned box (AAB) that bounds the 

attractor is given. Starting from this initial AAB, he creates a family 

https://doi.org/10.1016/j.chaos.2018.07.040 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2018.07.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.07.040&domain=pdf
mailto:adeniz@anadolu.edu.tr
mailto:gokcecakmak@anadolu.edu.tr
https://doi.org/10.1016/j.chaos.2018.07.040


484 A. Deniz, G. Çakmak / Chaos, Solitons and Fractals 114 (2018) 483–490 

Fig. 1. A graph with two nodes. 

of AABs with each diameter not greater than ε > 0 and their union 

containing A . Once such a family is obtained, then the so-called 

the spanning point set �( ε, δ) is formed for ε and suitably cho- 

sen δ, so that the smallest disk containing these points also con- 

tains the attractor A with proximity depending on ε and δ. Finally, 

the smallest disk enclosing the finite number of spanning points is 

found by Welzl’s algorithm. The details of Martyn’s method can be 

found in Section 3 . 

Welzl’s algorithm [23] is a recursive algorithm that aims to 

compute the smallest enclosing disk of finite number of points in 

d -dimensional space. For a set P = { p 1 , p 2 , . . . , p n } of n -points in 

R 

d , let md( P ) denote the smallest closed disk containing all points 

in P . The algorithm starts with P ′ = ∅ then adds the points from 

P individually to the set P ′ and computes md ( P ′ ). After the disk 

D = md (P ′ ) is computed for P ′ = { p 1 , p 2 , · · · , p i } with 1 ≤ i ≤ n , the 

algorithm checks whether p i +1 ∈ D . If this is the case, it controls 

the next point; otherwise p i +1 must be on the boundary of the 

smallest disk of the set { p 1 , p 2 , . . . , p i +1 } . Then, another subroutine 

starts to compute md({ p 1 , p 2 , . . . , p i +1 } ) with p i +1 on its boundary. 

The algorithm stops once all points of P are considered. 

Fractals can be considered in a different aspect with the graph 

self-similarity. It can be identified as a finite collection of metric 

spaces, each of them being finite union of contractive copies of 

themselves. This type of spaces are called graph-directed fractals. 

In literature, the smallest enclosing disk problem is not considered 

in the graph-directed case. This paper aims to address this gap. 

We now briefly summarize the graph-directed IFS. Let 

{ (X α, d α) | α = 1 , . . . , N} be a finite collection of complete metric 

spaces. The so called graph-directed fractals A 

α ⊂ X α can be defined 

as 

A 

α = 

N ⋃ 

β=1 

K α,β⋃ 

k =1 

ϕ 

α,β
k 

(A 

β ) 

where ϕ 

α,β
k 

: X β → X α are contractive mappings with contractivi- 

ties 0 ≤ λα,β
k 

< 1 (α, β = 1 , . . . , N and k = 1 , 2 , . . . , K 

α,β ) . The sys- 

tem { X α, ϕ 

α,β
k 

} is called a graph-directed iterated function system 

(GIFS). 

The mapping relationship of { X α, ϕ 

α,β
k 

} can be coded by a graph 

G = (V, E) where V = { 1 , 2 , . . . , N} is a vertex (node) set and E is an 

edge set. Each vertex α corresponds to a space ( X α , d α) and each 

edge e α, β ∈ E between vertices α and β corresponds to a contrac- 

tion between the spaces X α and X β (but in the reverse direction), 

see Fig. 1 . This is why we use the term “graph-directed iterated 

function system”. 

One can define an operator � on the product of the spaces 

H(X α) in the following way: 

� : H(X 1 ) × H(X 2 ) × · · · × H(X N ) → H(X 1 ) × H(X 2 ) × · · · × H(X N ) 

(U 1 , . . . , U N ) �→ (�1 (U 1 , . . . , U N ) , . . . , �N (U 1 , . . . , U N )) 

= 

( 

N ⋃ 

β=1 

K 1 ,β⋃ 

k =1 

ϕ 

1 ,β
k 

(U β ) , . . . , 
N ⋃ 

β=1 

K N,β⋃ 

k =1 

ϕ 

N,β
k 

(U β ) 

) 

. 

This map is also a contraction on H(X 1 ) × H(X 2 ) × · · · × H(X N ) and 

thus there exists subsets A 

α of X α , called attractors of the system 

{ X α, ϕ 

α,β
k 

} for α = 1 , . . . , N. Moreover, lim n →∞ 

�n (U 1 , U 2 , . . . , U N ) = 

(A 

1 , A 

2 , . . . , A 

N ) for any compact set U α ∈ H(X α) (see [9,18,19] ). 

This paper consists of two independent parts. In the first part, 

we will give upper bounds for the diameters of the smallest disks 

enclosing the attractors of a GIFS and in the second part, we will 

generalize the so-called “spanning point algorithm” to GIFS and 

show how to find disks as close as desired to the smallest disks. 

2. Upper bounds for the radii of smallest disks containing the 

attractors 

In this section, we will give upper bounds for the radii of the 

smallest disks enclosing the attractors of a GIFS. Our argument is 

based on the following lemma: 

Lemma 1. Let { X α, ϕ 

α,β
k 

} (α, β = 1 , 2 , . . . , N; k = 1 , 2 , . . . , K 

α,β
)

be 

a GIFS. If there exist subsets U α⊆X α such that �α(U 1 , U 2 , . . . , U N ) ⊆
U α then A 

α ⊆ U α where A 

α are the attractors of the system. 

Proof. On employing the hypothesis of the lemma, we write 

�(U 1 , . . . , U N ) = ( �1 (U 1 , . . . , U N ) , . . . , �N (U 1 , . . . , U N ) ) 

⊂ (U 1 , . . . , U N ) 

(here, note that the inclusion is componentwise) and apply- 

ing the operator � successively we obtain �n (U 1 , U 2 , . . . , U N ) ⊂
(U 1 , U 2 , . . . , U N ) for all n ∈ N . Then, we get A 

α ⊂ U α, since 

lim 

n →∞ 

�n ( U 1 , U 2 , . . . , U N ) = (A 

1 , A 

2 , . . . , A 

N ) . �

One can use Lemma 1 to acquire disks centered at an arbitrary 

x α ∈ X α with radius r x α such that A 

α ⊂ B (x α, r x α ) . The following 

proposition determines those radii: 

Proposition 2. Let { X α, ϕ 

α,β
k 

} (α, β = 1 , 2 , . . . , N; k = 1 , 2 , . . . , K 

α,β
)

be a GIFS with attractors A 

1 , A 

2 , . . . , A 

N . Let (x 1 , x 2 , . . . , x N ) ∈ X 1 ×
X 2 × · · · × X N be given. If the radii r x 1 , r x 2 , . . . , r x N satisfy a number of 

K := 

∑ N 
α=1 

∑ N 
β=1 K 

α,β inequalities 

r x α − λα,β
k 

r x β ≥ d α(ϕ 

α,β
k 

(x β ) , x α) , k = 1 , 2 , . . . , K (1) 

then we have A 

α ⊆ B (x α, r x α ) . 

Proof. For α = 1 , 2 , . . . , N, if we can show that 

�α( B ( x 1 , r x 1 ) , · · · , B ( x N , r x N ) ) ⊆ B ( x α, r x α ) 

then we are done by Lemma 1 . To prove this inclusion, we need to 

show that 

ϕ 

α,β
k 

(B (x β, r x β )) ⊆ B (x α, r x α ) 

for β = 1 , 2 , . . . , N and k = 1 , 2 , . . . , K 

α,β . Let x 0 ∈ B (x β, r x β ) . Using 

(1) , 

d α(ϕ 

α,β
k 

(x 0 ) , x α) ≤ d α(ϕ 

α,β
k 

(x 0 ) , ϕ 

α,β
k 

(x β )) + d α(ϕ 

α,β
k 

(x β ) , x α) 

≤ λα,β
k 

d β (x 0 , x β ) + d α(ϕ 

α,β
k 

(x β ) , x α) 

≤ λα,β
k 

r x β + d α(ϕ 

α,β
k 

(x β ) , x α) ≤ r x α . 

Then ϕ 

α,β
k 

(x 0 ) ∈ B (x α, r x α ) which completes the proof. �
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