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a b s t r a c t 

In this paper, we study the bifurcation of limit cycles in two special near-Hamiltonian polynomial planer 

systems which their corresponding Hamiltonian systems have a heteroclinic loop connecting a hyperbolic 

saddle and a cusp of order two. In these systems, we will compute the asymptotic expansions of cor- 

responding first order Melnikov functions near the loop and the center to analyze the number of limit 

cycles. Moreover, in the first system, by using the Chebychev criterion, we study the Poincaré bifurcation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Let H = H(x, y ) be a polynomial function in ( x, y ) of degree 

m > 1. Consider the Hamiltonian system 

˙ x = H y (x, y ) , ˙ y = −H x (x, y ) , (1) 

which has a continuous family of periodic orbits L h parameterized 

by the values h ∈ ( a, b ) and defined by the equation H(x, y ) = h . 

Now take a small perturbation of (1) of the form 

˙ x = H y (x, y ) + εp(x, y, δ) , ˙ y = −H x (x, y ) + εq (x, y, δ) , (2) 

where p and q are real polynomials of ( x, y ) with 

max { deg p, deg q } = n > 1 , which their coefficients are denoted 

by δ. Here, δ ∈ D ⊂ R 

k which D is a compact set and ε is a small 

positive parameter. Arnold in [1] asks about the maximum number 
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of isolated zeros of the Abelian Integrals 

M(h, δ) = 

∮ 
L h 

qdx − pdy, (3) 

which is also known as the first order Melnikov function asso- 

ciated to system (2) . This problem in the general case is called 

the week Hilbert’s 16th problem which is closely related to the 

second part of Hilbert’s 16th problem. Indeed, as a consequence 

of Poincaré–Pontryagin theorem, if M ( h, δ) is not identically zero, 

then the total number of the limit cycles of (2) bifurcating from 

the annulus 
⋃ 

h ∈ (a,b) { L h } is bounded by the maximum number of 

isolated zeros of M ( h, δ) for h ∈ ( a, b ). One of the interesting situ- 

ations for the family { L h } is when its inner boundary is a singular 

point of center type and its outer boundary is a non-elementary 

graphic. So the limiting behavior of M ( h, δ) as h → a or h → b 

becomes important and there are many papers on this subject. 

In other words, there have been many studies on the limit cycle 

bifurcations near the boundaries of { L h }. For example, Han et al. 

[5,7] studied M ( h, δ) near a homoclinic loop with a saddle or a 

cusp of order 1. Atabaigi et al. [2] , by using the method developed 

in [7] , studied M ( h, δ) near a homoclinic loop with a cusp of order 

2. In the heteroclinic case with two saddles, a saddle and a cusp 
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of order 1, or two cusps of order 1, the number of limit cycles was 

studied by Han et al. [5] and Sun et al. [10] . Li et al. [8] studied 

the number of limit cycles of the system (2) near a heteroclinic 

loop with two cusps of order 1 or 2. 

Remark 1.1. Suppose that the unperturbed Hamiltonian system 

(1) has a homoclinic loop passing through a nilpotent singular 

point at the origin. Thus, the function H ( x, y ) satisfies H x (0 , 0) = 

H y (0 , 0) = 0 , and 

∂(H y , −H x ) 

∂(x, y ) 
� = 0 , det 

∂(H y , −H x ) 

∂(x, y ) 
= 0 . 

Then, without loss of generality, we may suppose H yy (0 , 0) = 1 , 

H xy (0 , 0) = H xx (0 , 0) = 0 . It follows that the expansion of H ( x, y ) 

at the origin has the form 

H(x, y ) = 

1 

2 

y 2 + 

∑ 

i + j≥3 

h i j x 
i y j . (4) 

By the implicit function theorem, there exists a change of variables 

that puts (4) , again using the original variables, into the following 

form (see [7] ) 

H(x, y ) = H 

∗
0 (x ) + y 2 ˜ H (x, y ) , H 

∗
0 (x ) = 

∑ 

j≥3 

h j x 
j , ˜ H (0 , 0) = 

1 

2 

. 

The coefficients h j for j = 3 , . . . , 6 are as follows 

h 3 = h 30 , h 4 = −1 

2 

h 

2 
21 + h 40 , h 5 = h 12 h 

2 
21 − h 21 h 31 + h 50 , 

h 6 = −2 h 

2 
12 h 

2 
21 − h 03 h 

3 
21 + h 

2 
21 h 22 

+2 h 12 h 21 h 31 − 1 

2 

h 

2 
31 − h 21 h 41 + h 60 . 

Let k ≥ 3 be an integer such that 

h k � = 0 , h j = 0 , f or j < k. (5) 

We have the following definition from Han et al. [7] : 

Definition 1.2. (see [7] ) Suppose that the unperturbed system 

(1) has a homoclinic loop given by H(x, y ) = 0 passing through the 

origin. It is called a cuspidal homoclinic loop of order m provided 

(4) and (5) hold with k = 2 m + 1 , m ≥ 1. 

Bakhshalizadeh et al. in [3] studied the Melnikov function M ( h, 

δ) near the heteroclinic loop connecting a cusp of order two and a 

saddle point, and gave the asymptotic expansion of the first-order 

Melnikov function near this heteroclinic loop for (2) and then dis- 

cussed the number of limit cycles of some polynomial Liénard sys- 

tems. More precisely, they considered the following assumptions: 

(A) The system (1) has a heteroclinic loop denoted by 

L 0 := { (x, y ) : H(x, y ) = 0 } = L 1 
⋃ 

L 2 
⋃ { S 1 , S 2 } , 

where L 1 and L 2 are heteroclinic orbits connecting singu- 

lar points S 1 and S 2 so that ω(L 1 ) = α(L 2 ) = S 2 and ω(L 2 ) = 

α(L 1 ) = S 1 . 

(B) In a neighborhood of L 0 there is a family of periodic orbits 

of (1) denoted by L h = { (x, y ) : H(x, y ) = h } for 0 < −h � 1 . 

Then for the expansion of M ( h, δ) near h = 0 , they proved the 

following theorem. 

Theorem 1.3 [3] . Consider the analytic system (2) and suppose 

(1) satisfies the assumptions ( A ) and ( B ) . Then near h = 0 correspond- 

ing to the heteroclinic loop L 0 , the Melnikov function M ( h, δ) of sys- 

tem (2) has the following asymptotic expansion: 

M(h, δ) = c 0 (δ) + B 00 c 1 (δ) | h | 7 
10 + B 10 c 2 (δ) | h | 9 

10 + c 3 (δ) h ln | h | 
+ c 4 (δ) h + B 50 c 5 (δ) | h | 11 

10 + B 30 c 6 (δ) | h | 13 
10 

− 1 

17 

B 00 c 7 (δ) | h | 17 
10 − 1 

19 

B 10 c 8 (δ) | h | 19 
10 

+ c 9 (δ) h 

2 ln | h | + O (h 

2 ) , (6) 

in which 

c 0 (δ) = M(0 , δ) = 

∮ 
L 0 

qdx − pdy | ε=0 = 

2 ∑ 

i =1 

∫ 
L i 

(qdx − pdy ) | ε=0 , 

c 1 (δ) = c 1 (S 1 , δ) , c 2 (δ) = c 2 (S 1 , δ) , c 3 (δ) = c 1 (S 2 , δ) , 

c 5 (δ) = c 4 (S 1 , δ) , c 6 (δ) = c 5 (S 1 , δ) , c 7 (δ) = c 6 (S 1 , δ) , 

c 8 (δ) = c 7 (S 1 , δ) , c 9 (δ) = c 3 (S 2 , δ) , (7) 

where c i ( S 1 , δ), i = 1 , 2 , 4 , 5 , 6 , 7 are given in Lemma 3.3 of [2] and 

c i ( S 2 , δ), i = 1 , 3 come from Lemma 3.1 in [5] . Finally, 

c 4 (δ) = 

2 ∑ 

k =1 

∫ 
L 0 k 

(p x + q y − σk ) | ε=0 dt 

+ 

∫ 
L 03 

(p x + q y ) | ε=0 dt + b 1 c 1 (δ) + b 2 c 2 (δ) + b 3 c 3 (δ) , (8) 

provided b 11 + 2 a 20 | S 2 = 0 where σk = (p x + q y ) | S k , L 0 k = L 0 
⋂ 

U k , 

L 03 = L 0 − (L 01 

⋃ 

L 02 ) . In particular, if c 1 = c 2 = c 3 = 0 , then 

c 4 (δ) = 

∮ 
L 0 

(p x + q y ) | ε=0 dt = 

2 ∑ 

k =1 

∫ 
L k 

(p x + q y ) | ε=0 dt. (9) 

Moreover, by using Theorem 1.3 they studied the number of 

limit cycles near the heteroclinic loop and near the center. 

Theorem 1.4 [3] . Suppose that system (1) satisfies the conditions of 

Theorem 1.3 . If there exists some δ0 ∈ R 

k , such that 

c 0 (δ0 ) = c 1 (δ0 ) = · · · = c k 1 −1 (δ0 ) = 0 , c k 1 (δ0 ) � = 0 , 

b 0 (δ0 ) = b 1 (δ0 ) = · · · = b k 2 −1 (δ0 ) = 0 , b k 2 (δ0 ) � = 0 

and 

rank 
∂(c 0 , c 1 , . . . , c k 1 −1 , b 0 , b 1 , . . . , b k 2 −1 ) 

∂(δ1 , · · · , δk ) 
= k 1 + k 2 , 

then (2) can have k 1 + k 2 + 

1 −sgn (M(h 1 ,δ0 ) M(h 2 ,δ0 )) 
2 limit cycles for 

some ( ε, δ) near (0, δ0 ) from which k 1 limit cycles are near the het- 

eroclinic loop, k 2 limit cycles are near the center and 

1 − sgn (M(h 1 , δ0 ) M(h 2 , δ0 )) 

2 

limit cycle is located between them, where h 1 = 0 − ε 1 , h 2 = 0 + ε 2 
with ε1 and ε2 are positive and very small. 

Our aim in this paper is to investigate the bifurcation of limit 

cycles from two special Hamiltonian systems in the plane which 

are not Newtonian and have a heteroclinic loop connecting a 

hyperbolic saddle and a cusp of order two. The first system is a 

non-Newtonian system as follows: 

˙ x = 

38416 

177241 

y (x 2 + 1) 2 , 

˙ y = 

7 

6 

x 6 + 

9 

2 

x 5 + 

165 

28 

x 4 + 

225 

98 

x 3 − 10125 

10976 

x 2 

−50625 

76832 

x − 76832 

177241 

y 2 x 3 − 76832 

177241 

y 2 x. (10) 

The phase portrait of system (10) is shown in Fig. 1 . In 

Section 2 we perturb this system by εy f (x ) ∂ 
∂y 

, where 

f (x ) = a 0 + a 1 x + a 2 x 
2 + a 3 x 

3 + a 4 x 
4 + x 5 and then we study 
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