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a b s t r a c t 

This paper addresses the finite-time and fixed-time synchronization issue of delayed complex dynamical 

networks (CDNs). Firstly, as an important preliminary, an improved and generalized finite-time stabil- 

ity theory is established for delayed nonlinear systems to prove the finite-time synchronization mainly 

through the reduction to absurdity. Different from some existing results, a more detailed discussion of 

the setting time function for finite-time synchronization is given. Besides, a novel feedback controller is 

firstly proposed to unify finite-time and fixed-time synchronization just by adjusting the key control pa- 

rameter. Furthermore, several new criteria are derived to ensure the finite-time and fixed-time synchro- 

nization based on inequality analysis method and constructing appropriate Lyapunov functional. Finally, 

some numerical simulations are presented to support the theoretical results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Complex dynamical networks (CDNs), which present a high de- 

gree of complexity, have attracted wide attention because they are 

widespread in real world, such as the World Wide Web, power 

grid, patent use network, gene network, transportation network, 

metabolic pathways and so on. Complex network, composed of a 

large number of nodes and links, is a nonlinear dynamical sys- 

tem. Where the nodes denote the individuals in the network and 

the edges represent the connections among them. Over the past 

decades, complex networks with different structures have been 

studied and some results also have been yielded [1–3] . Although 

the results obtained in [1–3] are effective and convenient, none of 

these articles considered the effect of time delay on the system. 

Time delay is often the main cause of system instability and poor 

performance. In realistic CDNs, time delay is ubiquitous, such as 

the flow of steam and fluid in pipes, the transmission of electrical 

signals over long lines. Especially in the control system [4] . Nowa- 

days, inspired by the effect of time delays, the CDNs with time de- 

lays have attracted increasingly attention [5–8] . 
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One of the hot topics in the field of CDNs is synchronization 

due to its practical application in human heartbeat regulation, se- 

cure communication, information science and image processing 

and so on [9–13] . However, it is worthy of noting that most of ex- 

isting results including the articles mentioned above are actually 

asymptotic synchronization. These types of synchronization can be 

implemented only when the time is near infinity. In practical ap- 

plication, however, the synchronization aims are usually expected 

to be realized within a finite time. For this purpose, finite-time 

synchronization, which means that the time it takes for the sys- 

tem to be synchronized can be estimated, has been proposed and 

extensively studied in recent years [14–23] . In [16,17] , the problem 

of finite-time synchronization of a class of CDNs with time-varying 

delays and coupling time-varying delays was studied. Although the 

synchronization results obtained in above articles has the optimal 

convergence time, the setting time function has to depend on the 

initial conditions. In practical systems, however, the initial condi- 

tions of the system are difficult to obtain in advance, which makes 

it difficult to estimate the setting time. 

In order to solve the problem that the finite-time synchroniza- 

tion is heavily dependent on the initial conditions, the concept of 

fixed-time stability was proposed by Polyakov [18] . Fixed-time sta- 

bility is proposed based on the finite-time stability by demand- 

ing the boundness of the settling time function of the system to 

achieve synchronization. The fixed-time stability not only has bet- 

ter robustness and disturbance rejection properties, but also en- 

sures that the settling time independent of the initial conditions 

of the system. These merits can improve the efficiency and quality 
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of engineering management greatly. Research on fixed-time syn- 

chronization, however, is just beginning to germinate and the re- 

lated theories are still scarce. There are fewer articles on fixed-time 

synchronization in neural networks, let alone complex dynami- 

cal networks. In [19] , the authors provided a general approach to 

show that the essence of finite-time stability and fixed-time con- 

vergence, and some conditions were acquired to ensure that the 

setting time function was bounded. In recent work [20] , for the 

synchronous convergence time of the system, the author gave a 

more accurate estimate. Furthermore, investigations of fixed-time 

synchronization issues of nonlinear dynamical networks have been 

presented in [24–27] . As we known, many papers have considered 

the finite-time and fixed-time stability and consensus problems, 

but there are few works on the fixed-time synchronization. There- 

fore, it is interesting and important to investigate the fixed-time 

synchronization of CDNs with coupled delays. 

Another hot topic in the research of CDNs is control. We all 

know that most system synchronization can only be achieved with 

a suitable controller. At present, synchronization control has been 

investigated widely [1,3,12,21–31] . In [21,28] , based on pinning 

impulsive control and pinning control, the problem of the sys- 

tem’s finite time synchronization was investigated. In [22,23,29] , 

Some sufficient conditions were received to realize the finite-time 

or fixed-time synchronization of chaotic systems under the slid- 

ing mode control protocol. In [30,31] , the authors considered the 

finite-time synchronization of CDNs through designing periodi- 

cally intermittent control (PIC). Different from the controllers in 

[28,29] , the output of the system is intermittent rather than con- 

tinuous, based on this principle, the design of the PIC is divided 

into the control interval and the rest interval, which makes the 

controller more economical and effective, and can also avoid pro- 

longed work on the controller cause some damages. To the best of 

our knowledge, however, delayed CDNs are relatively unexplored 

in finite-time synchronization with periodic intermittent control. 

From this, an investigation of finite-time synchronization under 

PIC is important in both theoretical analysis and real applications. 

From [20,24,32,33] we can find that fixed-time synchronization is 

a special case of finite-time synchronization. discontinuous feed- 

back controllers designed in [34] were simple and efficient, easy to 

implement. The results obtained can only be achieved finite-time 

synchronization. To the best of my knowledge, no author has yet 

thought of implementing both types of synchronization by design- 

ing a uniform form of controller. 

Based on the above discussions, this paper will discuss the 

finite-time and fixed-time synchronization of CDNs with time- 

varying delays. The main contributions of this paper in comparison 

to the existing ones can be reflected as follows: 

(1) A novel theory of improvement on accurate analysis of set- 

ting time function of the finite-time stable delayed CDNs is devel- 

oped in this paper compared with [30,31] . 

(2) A more general intermittent control scheme, which can be 

employed to achieve synchronization within finite time for time 

delay systems, is designed compared with the works [15,28,34–36] . 

(3) An extended unified feedback controller is proposed, which 

can realize both finite-time and fixed-time synchronization. Until 

now, few articles consider these two synchronism simultaneously. 

Therefore, these two synchronism should be investigated, which 

can help us obtain more general results. 

(4) By regulating the main control parameters in the controller, 

not only both the finite-time and fixed-time synchronization can 

be achieved, but also the convergence rate of synchronization can 

be adjusted. It is of engineering interest to develop the efficiency 

of the controller by adjusting the appropriate parameters. 

The rest of this paper is organized as follows. Some neces- 

sary preliminaries and model description are given in Section 2 . In 

Section 3 the finite-time synchronization conditions are presented 

for delayed CDNs via periodic intermittent control, and finite-time 

and fixed-time synchronization are analyzed based on a unified 

control framework. simulations are given in Section 4 to verify the 

effectiveness of the obtained results. In Section 5 , conclusion is 

summarized. 

Notations. Let R n be the space of n -dimensional 

real column vectors. Denote x = (x 1 , · · · , x N ) 
T ∈ R N , 

| e i (t) | μ = (| e i 1 (t) | μ, | e i 2 (t) | μ, · · · , | e in (t) | μ) T and sign (e i (t)) = 

( sign (e i 1 (t)) , · · · , sign (e in (t))) T ∈ R n . || x || denotes the vector norm 

defined by || x || = ( 
∑ n 

i =1 x 
2 
i 
) 

1 
2 . λmax ( P )( λmin ( P )) is defined as the 

maximum (minimum) eigenvalue of the positive definite diagonal 

matrix P. I N is the identity matrix with N -dimensions. 

2. Model description and preliminaries 

Let us consider a general delayed complex network consisting 

of N dynamical nodes, which is described by 

˙ x i (t) = f (x i (t)) + c 

N ∑ 

j=1 

a i j �x j (t − τ (t)) , i = 1 , 2 , · · · , N (1) 

where x i (t) = (x i 1 (t ) , · · · , x in (t )) T ∈ R n is the state variable. f : 

R n → R n is a continuous nonlinear vector function. The nonnegative 

constant c is the coupling strength. � = diag (γ1 , γ2 , · · · , γn ) is a 

positive definite diagonal matrix, which denotes the inner-coupling 

matrix between each pair of nodes. A = (a i j ) N×N is the coupling 

configuration matrix. If there is a connection from the node i to 

the node j ( j � = i ), then a ij > 0. Otherwise, a i j = 0( j � = i ) and the di- 

agonal elements of matrix A is defined as a ii = −∑ N 
j =1 , j � = i a i j . The 

coupling time-varying delay τ ( t ) is a bounded and continuously 

differentiable function, i.e ., there exists a positive constant τ sat- 

isfying 0 ≤ ˙ τ (t) ≤ τ < 1 . 

Remark 1. In [30,31,37] , authors introduced a finite-time intermit- 

tent control method to realize the synchronization of CDNs. The 

influence of time-varying delays on the system is not considered. 

However, in this paper, we concern the finite-time synchronization 

problem for CDNs with time-varying delays. The models consid- 

ered in the paper are more general and more reasonable. 

Without loss of generality, we refer to system (1) as the drive 

system, and consider a response system described as follows: 

˙ y i (t) = f (y i (t)) + c 

N ∑ 

j=1 

a i j �y j (t − τ (t)) + U i (t) , i = 1 , 2 , · · · , N, 

(2) 

where y i (t) = (y i 1 (t ) , · · · , y in (t )) T ∈ R n is the state variable. U(t) = 

(U 1 (t) , · · · , U N (t)) T is the control input to be designed later. The 

other parameters are the same as in system (1). 

Assumption 1 ( QUAD ) . Assume that there exists a positive defi- 

nite diagonal matrix P = diag (p 1 , p 2 , · · · , p n ) and a diagonal ma- 

trix H = diag (h 1 , h 2 , · · · , h n ) , such that f ( · ) satisfies the following 

inequality: 

(u − v ) T P ( f (u ) − f (v ) − H(u − v )) ≤ −ξ (u − v ) T (u − v ) , 

for all u , v ∈ R n , ξ > 0. 

Remark 2. The vector field f is required to satisfy the Lipschitz 

condition in many CDNs [1,2,38–40] . There are also many articles 

require vector field f which satisfies the QUAD condition [29,30] . 

Lipschitz condition and QUAD condition, which usually made in 

the literature to prove network synchronization, are assumptions 

on the vector field f . Actually, if f is globally Lipschitz with a Lip- 

schitz constant l > 0, then f is QUAD( H, ξ ), with P H − ξ I N ≥ l|| P || I N 



Download English Version:

https://daneshyari.com/en/article/8253463

Download Persian Version:

https://daneshyari.com/article/8253463

Daneshyari.com

https://daneshyari.com/en/article/8253463
https://daneshyari.com/article/8253463
https://daneshyari.com

