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a b s t r a c t 

The propagation of nonlinear ion-acoustic (IA) structures in a two-component plasma consisting of ‘clas- 

sical’ ions and temperature degenerate trapped electrons is investigated. Using the reductive perturbation 

method, a nonlinear Schrödinger equation (NLSE) is obtained and the modulational instability (MI) of the 

ion acoustic waves (IAWs) is investigated. The regions of the stability and instability of the modulated 

structures are defined precisely depending on the MI criteria. The analytical solutions of the NLSE in 

the form of various types of freak waves, including the Peregrine soliton, the Akhmediev breather, and 

the Kuznetsov–Ma breather are examined. Moreover, the higher-order freak waves are presented. The 

characteristics of the rogue waves and their dependence on relevant parameters (the temperature of the 

degenerate trapped electrons and wavenumber) are investigated. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The nonlinear wave propagation is one of the basic research 

field in the plasma physics. Different types of nonlinear structures 

such as solitons, envelope holes, shocks, vortices, etc. have been 

investigated in many nonlinear medium [1–4,6] such as plasmas 

physics during the last few decades [3–5,7,8] . The soliton results 

due to the balance between nonlinearity and dispersion effects. 

This type of soliton is generally called as the Korteweg de Vries 

(KdV) soliton because its dynamics are governed by KdV equation 

[9] . On the other hand, envelope soliton is formed when wave 

group dispersion is in balance with nonlinearity of the medium. 

The envelope soliton is a localized modulated wavepacket whose 

dynamics are governed by the nonlinear Schrödinger equation 

(NLSE) [10] . The NLSE is one of the most relevant equations in 

physics and it is used to describe many nonlinear phenomena in 

various physical contexts such as the slow modulation of wave en- 

velopes of the carrier waves [11] . 

Ion-acoustic wave (IAW) is a low-frequency mode in which 

the pressure of the inertialess species (electrons) provide restor- 

ing force, whereas inertia comes from the mass of ions [12] . The 
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first experimental observation of IA solitons was made by Ikezi 

et al. [13] . The existence of the electrostatic structures such as soli- 

tary waves in the magnetosphere with density depressions are ob- 

served by Viking spacecraft [14] and Freja satellite. 

In the context of the NLSE, the major mechanism of such 

wave creation is modulational instability (MI) which admits high- 

intensity peaks and leads to the generation and interaction of 

the breathers , including the Peregrine solitons, i.e. first-order 

rogue/freak waves, the Akhmediev breather, and the Kuznetsov–

Ma breather [3,4] . The concept of the freak waves (FWs) was first 

discussed in the studies of ocean waves [15] . After that the study 

of these waves was gradually extended to other fields e.g., optical 

fibers, capillary water waves, Bose–Einstein condensates, superfluid 

helium, atmosphere, even in astrophysical environments, and re- 

cently in laboratory plasma physics as well [16–18] . Peregrine was 

the first person who investigated the first-order rogue wave so- 

lution of the generic NLSE. After that, the researchers carried out 

laboratory experiments to generate first-order rogue waves (RWs) 

in the multi-component plasma in the presence of negative ions 

[16,17] . They observed that a slowly varying amplitude-modulated 

perturbation undergoes self-modulation and hence gives rise to lo- 

calized pulses with huge amplitude. Moreover, they noticed that 

the measured amplitude of the first-order rogue wave is three 

times the amplitude of the nearby carrier wave amplitude which 

agrees with the rational solution of the NLSE. Recently, the ex- 

perimental observation of higher-order, i.e., second-order RWs in 
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multi-component plasma with negative ions has been investigated 

by Pathak et al. [18] . They noticed that the wave energy concen- 

trates to a smaller localized area with amplitude amplification up 

to 5 times of the background carrier wave. Also, they compared 

the experimental results with second-order RWs of the NLSE and 

found that there was full consensus among them. 

Quantum plasmas are common in planetary interiors, compact 

astrophysical objects [19] , the cores of giant planets, the crusts of 

old stars [20,21] , semiconductors [22] , quantum X-ray free-electron 

lasers [23,24] , and intense laser-solid density plasma experiments. 

This field is growing widely these days because of its wide ranging 

potential applications in semiconductors, metals, microelectronics 

[25] , thin metal films and modern technology [26–28] . Further- 

more, a Fermi-degenerate dense plasma may also arise when a pel- 

let of hydrogen is compressed to many times the solid density in 

the fast ignition scenario for inertial confinement fusion [29,30] . A 

substantial research investigations on quantum degenerate plasmas 

have been carried out by different authors, taking into account var- 

ious important effects like magnetic field quantization, relativistic 

effects, degeneracy and trapping [31–33] . For instance, Shukla and 

Eliasson [34] have recapitulated the linear and nonlinear investi- 

gation in quantum degenerate plasmas. The nonlinear propagation 

of ion-acoustic freak waves in an unmagnetized plasma consist- 

ing of cold positive ions and superthermal electrons subjected to 

cold positrons beam has been investigated in which it has been 

found that the region of the modulational stability is enhanced 

with the increase of positron beam speed and positron population 

[35] . Moreover, the linear and nonlinear (solitary structures) prop- 

agation of quantum drift IAWs have been studied in an inhomoge- 

neous degenerate quantum plasma taking into account the effect 

of electron trapping [36] . The authors used a reductive perturba- 

tion method to obtain the drift the KdV and KP equations for ion 

drift and coupled drift-ion acoustic solitary structures. 

We would like to point here that relatively little work has 

been done on trapping as microscopic phenomena in quantum 

plasmas. One of the first investigations in this area was carried 

out by Luque et al. [37] who considered quantum corrected elec- 

tron holes by solving the Wigner–Poisson system perturbatively. 

Gurevich [38] introduced the effect of adiabatic trapping at the 

microscopic level and observed that when trapping was absent, 

the adiabatic trapping produced a 3/2 power nonlinearity instead 

of the usual quadratic one. Experimental analysis [39] and com- 

puter simulations [40] confirmed the presence of trapping as a mi- 

croscopic phenomenon. Demeio [41] explored the effects of trap- 

ping on Bernstein, Greene, and Kruskal equilibria and solved the 

Wigner–Poisson system employing the perturbative technique in 

order to study the effect of trapping in quantum phase space. Re- 

cently, Shah et al. [42] studied the effect of trapping in quantum 

plasma using Gurevich approach and investigated the formation 

of one-dimensional ion acoustic solitary structures in both par- 

tially and fully degenerate plasma with small temperature effects. 

Waqas et al. [43] investigated the propagation of linear and non- 

linear electrostatic waves in a dense magneto plasma with trapped 

electrons. Later on, the investigation on the solitary structure in 

the presence of a quantizing magnetic field via Landau quantiza- 

tion was carried out in Refs. [44,45] . 

In the present work, we extend the study [42] to derive a NLSE 

using a reductive perturbation technique (the derivative expansion 

method), and examined the effects of degenerate trapped electrons 

on the modulational instability of ion-acoustic waves (IAWs) and 

the profiles of breathers waves. We use the Fermi–Dirac distri- 

bution function for the electrons with arbitrary degeneracy and 

obtain an expression for the number density for the electrons 

trapped in a potential well. We point out here that in contrast with 

Refs. [37,41] , where the Wigner–Poisson equation is used and thus 

quantum diffraction effects are taken into account. Here, the quan- 

tum statistical effects are taken into account via the calculations of 

the electron number density by using the Fermi–Dirac distribution 

function. 

The layout of the manuscript is summarized as follows: In 

Section 2 , the basic equations describing the IAWs in a plasma 

comprising of warm positive ions and temperature degenerate 

electrons are presented. The RPT is employed to derive a NLSE 

which describes the evolution of the wave packet envelope in 

Section 3 . In Section 4 , criteria for modulational instability (MI) of 

the IAWs are examined. Within the MI region, a random perturba- 

tion of the amplitude grows enormously and thus creates breathers 

waves. The analytical solutions of the NLSE in the form of the var- 

ious types of freak waves (FWs), including the fundamental rogue 

waves (RWs)/Peregrine soliton, the Akhmediev breather (AB), and 

the Kuznetsov–Ma (KM) breather are investigated. The variation of 

the structural properties of the breathers with relevant plasma pa- 

rameters is discussed as well. Summary of the research work is 

presented in Section 5 . 

2. Set of dynamic equation and derivation of a NLSE 

We consider an homogeneous quantum plasma comprising 

of cold positive nondegenerate ions and temperature degenerate 

trapped electrons. The ions are considered to be classical, whereas 

the electrons are assumed to follow the Fermi–Dirac distribution. 

Therefore, we shall adopt the adiabatictrapped degenerate for elec- 

trons, by relying on a similar notations in Ref. [42] wherein the 

fundamental algebra is expressed in detail. Therefore, the normal- 

ized number density of electrons is accordingly expressed as 

n e = (1 + �) 2 / 3 + T 2 (1 + �) −1 / 2 , (1) 

where T and � are, respectively, the normalized degenerate elec- 

tron temperature and the electrostatic potential. Note that the first 

term of Eq. (1) is responsible for the effect of trapping while sec- 

ond term represents the temperature effects for partially degener- 

ate plasma. 

The ions are taken to be cold and non degenerate due to their 

mass as compared to degenerate electrons. Therefore, the normal- 

ized ions fluid equations can be expressed as [42] 

∂n i 

∂t 
+ 

∂ ( n i v i ) 
∂x 

= 0 , (2) 

∂v i 
∂t 

+ v i 
∂v i 
∂x 

= −∂�

∂x 
, (3) 

∂ 2 �

∂x 2 
= ( n e − n i ) . (4) 

Here, n i and n e are, respectively, the normalized number densities 

of the ion and electron, respectively while v i is the re-scaled ions 

fluid speed and � is the normalized electrostatic potential. 

For small-amplitude waves, i.e. under the approximation �� 1 

and using binomial series expansion, Eq. (1) can be expanded as 

n e = 

∞ ∑ 

j=0 

α j �
j , (5) 

with α0 = (1 + T 2 ) , α1 = (3 − T 2 ) / 2 , α2 = 3(1 + T 2 ) / 8 , and α3 = 

−(1 + 5 T 2 ) / 6 . 

In order to investigate the modulational instability (MI) of the 

ion-acoustic waves (IAWs), the governing equations is reduced to 

a NLSE using the standard derivative expansion method. According 

to this method, the independent (slow) variables are stretched as, 

ξ = ε(x − v g t ) and τ = ε 2 t , (6) 

where ε is a real parameter ( ε < < 1) and v g is the group velocity 

of the wavepackets that is defined by the compatibility condition. 
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