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a b s t r a c t 

This paper aimed to investigate the stationary response of non-linear system with fractional derivative 

damping term under Gaussian white noise excitation. The corresponding Fokker–Plank–Kolmogorov (FPK) 

equation can be deduced by utilizing the stochastic averaging method and Stratonovich–Khasminskii the- 

orem in the first place. And then we can solve the FPK equation to obtain the stationary probability 

densities (SPDs) of amplitude, which in fact can be used to describe the response of system. Further- 

more, the analytical results coincide with the Monte Carlo results. Finally, one found that reducing frac- 

tional derivative order is able to enhance the response of system and increasing fractional coefficient can 

weaken the response of system. So the fractional derivative damping term has a great effect on the re- 

sponse of Duffing-Van der Pol oscillator. In addition, the response can also be influenced by other system 

parameters. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The fractional-order derivative was first proposed by L’Hospital 

in 1695. And since then, fractional calculus has been widely in- 

vestigated and applied in many fields as a kind of non-linear fac- 

tors [1–5] . In contrast to the conventional integer-order systems, 

fractional-order derivative systems have some significant advan- 

tages: Firstly, in the past few years, a large amount of models 

in engineering vibrations indicated that long-memory factor ex- 

ists in many actual systems, which are difficult to be precisely de- 

scribed by integer-order model [6] . So the fractional calculus was 

introduced to make up for this shortcoming. Bagley and Torvik 

[7] proved that half-order fractional derivative models can quite 

well simulate the frequency dependence damping of viscoelastic 

materials. In addition, an increasing number of facts [8–12] showed 

that the model with fractional derivative could give a more accu- 

rate description and give a deeper insight into the inherent nature 

of realistic physical systems than the integer-order model. Studying 

fractional dynamic has great theoretical significance and applicable 

value. 

To obtain the approximate analytical solution of the fractional- 

order systems, stochastic averaging method has been extensively 
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adopted due to the following two advantages: First, the system 

equations can be much simplified while the essential behaviors 

of system were retained. Second, the dimension of equations was 

often reduced, so that we can obtain the solution of the equa- 

tion more easily. For instance, response of the fractional Duffing- 

Rayleigh system under Gaussian white noise was considered by 

Zhang et al. [13] employing stochastic averaging procedure. Yang 

et al. [14] investigated the stochastic response of the Van der 

Pol oscillator with two kinds of fractional derivative under Gaus- 

sian white noise factor utilizing stochastic averaging method. Yang 

[15,16] also studied the stationary response and stochastic re- 

sponse of non-linear systems and a class of self-excited systems 

with Caputo-type fractional derivative driven by Gaussian white 

noise. Chen and Zhu [17] discussed the stochastic jump and bi- 

furcation of the Duffing oscillator endowed with fractional deriva- 

tive damping of order α (0 < α < 1) combined harmonic and white 

noise excitations. Using the stochastic averaging method, Huang 

and Jin [18] demonstrated the stochastic response and stability of 

a single-degree-of-freedom non-linear system endowed with frac- 

tional derivative. Chen et al. [19] explored the first passage fail- 

ure of multi-degree-of-freedom quasi-integrable Hamiltonian sys- 

tem with damping described by a fractional derivative. 

There are multitudinous techniques were adopted to pick up 

the approximate solution analytically except for stochastic averag- 

ing measure. For example, the present authors [20,21] researched 

the response of the stochastic non-linear oscillators with fractional 

derivative damping term via Lindstead-Poincare (L-P) method and 
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the multiple scales approach. Combining the advantages of (L-P) 

method and multiple scales approach, a new technique is proposed 

to deal with strongly non-linear stochastic systems with fractional 

derivative damping in Ref. [22] . Agrawal [23] proposed an analyti- 

cal approach for stochastic dynamic systems with fractional deriva- 

tive using eigenvector expansion method and Laplace transform. A 

frequency-domain way is applied to the stochastic systems having 

fractional derivative by Spanos and Zeldin in Ref. [24] . Cai and Lin 

[25] adopted the cumulant neglect closure scheme to evaluate the 

response spectral densities for nonlinear systems excited by Gaus- 

sian white noises or filtered Gaussian white noises. 

Up to now, the effect of fractional derivative damping term 

on response of Duffing-Van der Pol system has not been studied. 

In this paper we try to explore the response of this system. The 

structure of this paper is organized as follows. In Section 2 , the 

fractional Duffing-Van der Pol system under Gaussian white noise 

is introduced. We derive approximate SPDs via stochastic averag- 

ing method in Section 3 . In Section 4 , Monte Carlo simulation is 

used to verify the theoretical results and the effects of system pa- 

rameters on response are discussed. Finally conclusion is listed in 

Section 5 . 

2. Duffing-Van der Pol system 

In this section, the considered fractional-order Duffing-Van der 

Pol system subject to Gaussian white noise excitation can be given 

as 

Ẍ + ( β1 + β2 X 

2 ) ˙ X + λD 

αX (t) + ω 0 
2 X + γ X 

3 = W (t) , (1) 

here, α(0 < α < 1) indicates the order of fractional damping term; 

β1 is the linear damping coefficient of the system; β2 is the 

non-linear damping coefficient; ω 0 is the natural frequency of the 

system; λ denotes the coefficient of fractional derivative term; 

g(x ) = ω 0 
2 X + γ X 3 represents restoring force, which is a strongly 

non-linear function; W ( t ) refers to Gaussian white noise with zero 

mean and correlation function 〈 W (t) W (t − τ ) 〉 = 2 Dδ(τ ) , here 

δ( τ ) is the Dirac-delta function . 

Here, we adopt the Riemann–Liouville type fractional derivative 

D 

αX (t) = 

1 

	(1 − α) 

d 

dt 

∫ t 

0 

X ( t − υ) 

υα
dυ. (2) 

3. Stochastic averaging method 

According to the generalized harmonic functions the general- 

ized displacement and velocity can be written as [26] 

X (t) = A (t ) cos �(t ) , (3a) 

˙ X (t) = −A (t) η(A , �) sin �(t) , (3b) 

in which 

�(t) = 
(t) + 	(t) , (4) 

η(A , �) = 

d


dt 

= 

√ 

2[ U(A ) − U(A cos �)] 

A 

2 sin 

2 �

= [( ω 0 
2 + 3 γ A 

2 / 4)(1 + ρ cos 2�)] 
1 / 2 

(5) 

where 

ρ = γ A 

2 / (4 ω 0 
2 + 3 γ A 

2 ) , (6) 

U(X ) = 

1 

2 

ω 0 
2 X 

2 + 

1 

4 

γ X 

4 . (7) 

�( t ) is the instantaneous phase and η( A , �) is the instanta- 

neous frequency of oscillation. U ( X ) denotes the potential energy; 

cos �( t ) and sin �( t ) are so called generalized harmonic functions. 

Expanding η( A , �) into Fourier series, one can arrive at 

η(A , �) = b 0 + 

∞ ∑ 

i =1 

b 2 i (A ) cos (2 i �) , (8) 

where 

b 2 i (A ) = 

1 

2 π

∫ 2 π

0 

ν(A, �) cos (2 i �) d� i = 0 , 1 , 2 , 3 · · · . (9) 

the approximate averaged frequency ϕ( A ) can be obtained in the 

following form 

ϕ(A ) = ( ω 0 
2 + 3 γ A 

2 / 4) 1 / 2 (1 − ρ2 / 16) = b 0 (A ) . (10) 

Treating Eqs.(3a) and (3b) as a generalized Van der Pol transfor- 

mation from (X, ˙ X ) to ( A , 	),one can receive the following stochas- 

tic differential equations of amplitude A and phase 	: 

dA 

dt 
= M 11 (A, 	) + M 12 (A, 	) + G 1 (A, 	) W (t) , (11a) 

d	

dt 
= M 21 (A, 	) + M 22 (A, 	) + G 2 (A, 	) W (t) , (11b) 

where 

M 11 = 

Aη(A , �) sin �

g(A ) 
λD 

α(A cos �) , 

M 12 = 

( β1 + β2 A 

2 cos 2 �) A 

2 η2 (A, �) sin 

2 �

g(A ) 
, 

M 21 = 

η(A , �) cos �

g(A ) 
λD 

α(A cos �) , 

M 22 = − ( β1 + β2 A 

2 cos 2 �) A η2 (A, �) sin � cos �

g(A ) 
, 

G 1 = −Aη(A , �) sin �

g(A ) 
, 

G 2 = −η(A , �) cos �

g(A ) 
. (12) 

Eq. (11) can be modeled as Stratonovich stochastic differential 

equation and then transformed into It ̂  o stochastic differential equa- 

tion by adding Wong Zakai correction term [27] . The result is 

dA = m (A ) dt + σ (A ) dB (t) , (13) 

and the drift and diffusion coefficients, respectively, are 

m (A ) = 

〈
M 11 + M 12 + D 

∂ G 1 

∂A 

G 1 + D 

∂ G 1 

∂	
G 2 

〉
�

, (14) 

σ 2 (A ) = 〈 2 D G 1 G 2 〉 �. (15) 

where 〈•〉 � represents the averaging with respect to � from 0 to 

2 π . 

Next we require calculating the above drift and diffusion coef- 

ficients. Firstly, one can obtain the approximate expression of the 

�( t ) by substituting Eq.(10) into Eq.(4) , as follows 

�(t) ≈ φ(A ) t + 	(t) . (16) 

And then on account of A and 	 vary slowly with time, so the 

following approximate relation can be received via Eq. (16) 

�(t − τ ) ≈ �(t) − φ(A ) τ. (17) 
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