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In this paper we have taken a delayed predator-prey system with stage structure among prey species. 

We assume that there is cooperation among the mature and immature preys to ensure immature prey’s 

existence and there is a maturation delay for immature to be mature for the preys. With this model the 

local stability has been discussed in presence of delay. By taking maturation delay as the key parameter, 

the condition for local stability has been obtained by constructing a Lyapunov functional. By taking the 

maturation delay as the bifurcation parameter the necessary conditions for Hopf-bifurcation have been 

discussed both analytically and numerically. The length of delay has been estimated to preserve the sta- 

bility. Also, Lyapunov exponents have been evaluated numerically for different cases. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Among the models of mathematical ecology, predator-prey in- 

teractions are one of the most important ones. Lotka-Volterra first 

introduced a mathematical model on predator-prey system [14] . 

After that lot of researchers have studied predator-prey models 

by incorporating different situations, like: intra-species competi- 

tion [6,9] , cooperation [16] stage structure [7,18,25] etc. In classi- 

cal population model it is assumed that all the populations have 

the same ability [24] and which is unrealistic in the considerations 

that the new born specimens are immediately able to compete and 

reproduce [10] . In order to include the effect it is assumed that in 

real life newly born first have to grow up, i.e., in a real world, al- 

most all the populations have the life history that can be divided 

into two stages, immature and mature, where the immature pop- 

ulations are raised by their parents (mature populations) [20,24] . 

Aiello and Freedman [2] proposed and studied the stage-structured 

single species model with time delay as: 

˙ x i (t) = αx m 

(t) − γ x i (t) − αe −γ τ x m 

(t − τ ) , 

˙ x m 

(t) = αe −γ τ x m 

(t − τ ) − βx 2 m 

(t) , (1) 

where x i ( t ) is the density of the immature and x m 

( t ) is the density 

of the mature populations at time t , respectively. α is the birth 

rate of the immature population, γ and β are the death rates 
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of the immature and the mature populations respectively, τ is 

the maturity delay, αe −γ τ x m 

(t − τ ) represents the quantity which 

the immature, born at time t − τ can survive at time t. Based on 

the above ideas, many authors studied different kinds of ecologi- 

cal models with stage structure for more than one species mod- 

els [5,19,21–23] . Gourley and Kuang [8] have discussed the stage 

structured predator-prey model with constant maturation time de- 

lay and with this model the stability and the bifurcation have 

been discussed. Bandyopadhyay and Banerjee [3] have discussed 

a stage structured prey-predator model with stage structure for 

preys. Also, they have assumed the time delay for the predators 

due to gestation. Using the model the stability and conditions for 

Hopf-bifurcation have been discussed there. 

In this paper we have discussed a predator-prey system with 

stage structure on preys. We assume that the birth rate of the 

immature preys depend in its feeding by the mature prey and 

it grows logistically [12,13] . The death rate of the immature and 

mature preys are proportional to the existing immature and ma- 

ture preys respectively. Also, we assume that there is coopera- 

tion among mature and immature preys to protect immature preys 

against the predators. The predators consumes both the preys (im- 

mature and mature) as their food. The death rate of predators are 

proportional to the existing predators and there is intra-species 

competition among the predators. As an example for this model 

we assume a subsystem of a forest consisting of buffalos as preys 

and lions as predators. Based on the above assumptions we derive 
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the model as: 

dx 1 
dT 

= rx 2 (1 − x 1 + x 2 
K 

) − d 1 x 1 − bx 1 + σ x 1 x 2 − c 1 x 1 y 1 , 

dx 2 
dT 

= bx 1 − d 2 x 2 − c 2 x 2 y 1 , 

dy 1 
dT 

= −d 3 y 1 − Dy 2 1 + e 1 x 1 y 1 + e 2 x 2 y 1 , (2) 

where x 1 , x 2 and y 1 are the densities of immature preys, mature 

preys and predators respectively and r > 0, is the birth rate of the 

immature preys, K > 0 is the carrying capacity for the preys, d 1 , 

d 2 , d 3 > 0 are death rates of the immature, mature and the preda- 

tors respectively. b > 0 is the conversion rate from immature to 

mature preys, σ > 0 is the cooperation rate among the immature 

and mature preys, c 1 , c 2 > 0 are the rate of predation for immature 

and mature preys respectively. D > 0 is the intra-species compe- 

tition rate for predators, e 1 , e 2 > 0 are the conversion rates from 

prey mass to predator mass. Now substituting x = 

x 1 
K , y = 

x 2 
K , z = 

(c 2 + c 1 ) y 1 
e 1 + e 2 , T = 

t 
r the non-dimensional form of system (2) is given 

as 

dx 

dt 
= y (1 − y ) − α1 x − βx + γ1 xy − δ1 xz, 

dy 

dt 
= βx − α2 y − δ2 yz, 

dz 

d t 
= −D 1 z − D 2 z 

2 + δ3 xz + δ4 yz, (3) 

where α1 = 

d 1 
r , β = 

b 
r , γ1 = 

σK 
r − 1 , δ1 = 

c 1 (e 1 + e 2 ) 
r(c 1 + c 2 ) , α2 = 

d 2 
r , δ2 = 

c 2 (e 1 + e 2 ) 
r(c 1 + c 2 ) , D 1 = 

d 3 
r , D 2 = 

D (e 1 + e 2 ) 
r(c 1 + c 2 ) , δ3 = 

e 1 K 
r , δ4 = 

e 2 K 
r . 

Introducing time delay for maturation in the preys equations 

the system (3) becomes 

dx 

dt 
= y (1 − y ) − α1 x − β1 (τ ) x (t − τ ) + γ1 xy − δ1 xz, 

dy 

dt 
= β1 (τ ) x (t − τ ) − α2 y − δ2 yz, 

dz 

dt 
= −D 1 z − D 2 z 

2 + δ3 xz + δ4 yz, (4) 

subject to the initial conditions 

x (θ ) = φ1 (θ ) > 0 , θ ∈ [ −τ, 0) ;φ1 (0) > 0 , 

y (θ ) = φ2 (θ ) > 0 , 

z(θ ) = φ3 (θ ) > 0 , (5) 

where β1 is a function of delay τ . For numerical analysis of our 

model we have taken a particular form of β1 ( τ ) from ref. [1] . 

In this paper, first we shall show that the solutions of (4) are 

positive and bounded. Then we shall derive the equilibrium points 

( Section 3 ) for the system (4) . In Section 4 , the stability analysis of 

(4) has been discussed in presence of delay by constructing a suit- 

able Lyapunov functional and the conditions for local stability have 

been derived. In Section 5 , the conditions for Hopf-bifurcation have 

been derived by taking the maturation delay ( τ ) as bifurcation pa- 

rameter. In Section 6 we estimate the length of delay to preserve 

the stability and Section 7 deals with the numerical results and 

their interpretation. Finally, the paper ends with a conclusion of 

our work. 

2. Positivity and boundedness of solutions 

In this section we shall discuss about the positivity and bound- 

edness of the solutions of (4) . The system (4) can be written in the 

form 

˙ X = F (X ) , (6) 

where X = (x, y, z) T ∈ R 3 and F ( X ) is given as 

F (F 1 (X ) , F 2 (X ) , F 3 (X )) T = [ 

y (1 − y ) − α1 x − β1 x (t − τ ) + γ1 xy − δ1 xz 
β1 x (t − τ ) − α2 y − δ2 yz 

−D 1 z − D 2 z 
2 + δ3 xz + δ4 yz 

] 

. 

Now let R 3 + = [0 , ∞ ) 3 and F : R 3+1 
+ → R 3 satisfies locally Lipschitz’s 

condition and [ F i (X )] 
x (t)=0 ,y (t)=0 ,z(t)=0 ,X∈ R 3 + ≥ 0 , i = 1 , 2 , 3 . Follow- 

ing the steps of [3] we can say that the solution of (6) as well 

as the solutions of (4) with the unique positive initial conditions 

are positive and each component of X remains in the interval [0, 

A ) for some A > 0. If A = ∞ then 

lim t→∞ 

sup (x (t) + y (t) + z(t)) = ∞ . 

Now we prove that the solutions of (4) are bounded. Let us con- 

struct a function V ( x, y, z ) as 

V = x + y + z. (7) 

Differentiating (7) w.r.t. t we get, 

dV 

dt 
≤ y − α1 x 

(
1 − γ1 

α1 

y 

)
+ xz(δ3 − δ1 ) + yz(δ4 − δ2 ) . (8) 

If 

δ3 < δ1 , δ4 < δ2 , y < 

α1 

γ1 

, (9) 

then from (8) we can write 

dV 

dt 
≤ y ≤ (x + y + z) . (10) 

This gives us the following result 

(x + y + z) ≤ (x (0) + y (0) + z(0)) e −t . (11) 

If 0 < φ1 (θ ) + φ2 (θ ) + φ3 (θ ) < M, θ ∈ [ −τ, 0] and M is any posi- 

tive constant, then 0 < x (0) + y (0) + z(0) < M, hence we can say 

that the solutions of (4) are bounded if (9) holds. �

3. Equilibrium points 

There are several equilibrium points of system (4) like: the triv- 

ial equilibrium E 1 (0, 0, 0), the predator free equilibrium E 2 ( x , y , 0) 

where x , y are the solutions of 

y (1 − y ) − α1 x − β1 x + γ1 x y = 0 , 

β1 x − α2 y = 0 , (12) 

and the interior equilibrium point E 3 ( x 
∗, y ∗, z ∗), where the form 

of x ∗, y ∗ and z ∗ can be obtained by solving the following set of 

equations: 

y ∗( 1 − y ∗) − α1 x 
∗ − β1 x 

∗ + γ1 x 
∗y ∗ − δ1 x 

∗z ∗ = 0 , 

β1 x 
∗ − α2 y 

∗ − δ2 y 
∗z ∗ = 0 , (13) 

−D 1 z 
∗ − D 2 z 

∗2 + δ3 x 
∗z ∗ + δ4 y 

∗z ∗ = 0 . 

Throughout this work we shall discuss the dynamics of the interior 

equilibrium point E 3 unless otherwise it is specified. 

4. Stability analysis 

Linear stability implies a system is stable over a small, small 

disturbance. Here we shall discuss the stability of the system 

(4) around E 3 by constructing a suitable Lyapunov functional given 

in (15) . Let u 1 (t) = x − x ∗, u 2 (t) = y − y ∗ and u 3 (t) = z − z ∗ then 

the system (4) can be written into the form as: 

dA 1 

dt 
= p 11 u 1 + p 12 u 2 − p 13 u 3 , 

dA 2 

dt 
= p 21 u 1 + p 22 u 2 − p 23 u 3 , 

dA 3 

dt 
= p 31 u 1 + p 32 u 2 + p 33 u 3 , (14) 
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