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a b s t r a c t 

It has been shown that natural interval extensions (NIE) can be used to calculate the largest positive 

Lyapunov exponent (LLE). However, the elaboration of NIE are not always possible for some dynamical 

systems, such as those modelled by simple equations or by Simulink-type blocks. In this paper, we use 

rounding mode of floating-point numbers to compute the LLE. We have exhibited how to produce two 

pseudo-orbits by means of different rounding modes; these pseudo-orbits are used to calculate the Lower 

Bound Error (LBE). The LLE is the slope of the line gotten from the logarithm of the LBE, which is esti- 

mated by means of a recursive least square algorithm (RLS). The main contribution of this paper is to 

develop a procedure to compute the LLE based on the LBE without using the NIE. Additionally, with the 

aid of RLS the number of required points has been decreased. Eight numerical examples are given to 

show the effectiveness of the proposed technique. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is generally accepted that the largest positive Lyapunov ex- 

ponent (LLE) is one of the best approaches to detect the pres- 

ence of chaos in a dynamical system [1–7] . Lyapunov exponents 

measure the average divergence or convergence of nearby trajec- 

tories along certain directions in state space. In chaotic systems, 

the states of two copies of the same system separate exponen- 

tially with time despite very similar initial conditions [8,9] . Several 

numerical methods to estimate LLE have been proposed since the 

work by Oseledec [10] . In general, Lyapunov exponents are com- 

puted by tracing the exponential divergence of close trajectories. 

This divergence is explored in [11] to calculate the LLE, although 

in [12] it is pointed out that such a method is not very robust 

and difficult to apply. To overwhelm this problem, Rosenstein et al. 

[1] and Kantz [12] have proposed a different strategy, in which 

the time dependence of distances between nearby trajectories is 

recorded explicitly to select the appropriate length scale and range 

of times from the output [2] . Examples to compute the LLE can be 

seen in [1,3,6,7,11–14,14–25] , just to cite a few. 

The relevance of the measure of the LLE and the observation 

of that two copies of the same system separate exponentially does 
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not rely only on the characterization of the system is chaotic or 

not. Perc and Marhl [26] have developed a technique in which 

this featured is exploited to detect and control unstable periodic 

orbits. It is also important to state that the determination of LLE 

has been applied with success to acquire important insights into 

system dynamics [23–25,27] . Recently, Mendes and Nepomuceno 

[2] have presented a simple algorithm to estimate the LLE. The ap- 

proach is based on the concept of the lower bound error (LBE) first 

introduced in [28] and further developed in [29] . To estimate the 

LLE, the system, either discrete or continuous, is simulated using 

two different natural interval extensions (NIE), which are the foun- 

dation used to calculate the LBE. Although, the method proposed 

in [2] brings some interesting developments, either for its simplic- 

ity and robustness or for the smaller amount of required data, it 

presents at least one downside, which is the need to elaborate NIE 

[30] . In a first instance, this seems to be an easy step, but soon we 

have realised that there are many cases in which NIE are not easily 

derived. For example, let the quadratic map [31] given by 

x n +1 = 2 − x 2 n . (1) 

This map is in a very simplified form, which does not allow any 

change of sequence in the arithmetic operation to produce a dif- 

ferent NIE. Besides that, there are dynamical systems, modelled by 

neural networks, such as in [32] , which equations are not easily 

manipulated. We may also mention systems modelled by blocks, 

such as Simulink [33] , which equations are not explicitly available. 

Thus, to overcome this limitation, we have found that two differ- 
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ent rounding modes present similar effects to those produced by 

two NIE. Therefore, rounding mode has been applied instead of us- 

ing NIE to calculate the LBE, and consequently the LLE. According 

to IEEE 754-2008 standard, the rounding mode indicates how the 

least significant returned digit of a rounded result is to be calcu- 

lated [34–36] , this can be simply obtained with an internal Matlab 

function [37] or in C 

++ [38] . From this point, this paper follows 

the steps presented in [2] , where the LLE is obtained by a sim- 

ple least square fit to the line of the natural logarithm of LBE, just 

about from the beginning of simulation up to the instant when 

the LBE stops increasing. We have also improved this stage replac- 

ing the least square by the recursive least square algorithm (RLS) 

[39] . This brings two main advantages: reduction of the number of 

points and automation of the process, as we do not need to set 

up beginning and end points of LBE range to calculate the slope, 

and thus the LLE. As in [1] the natural logarithm is adopted here. 

The method is applied successfully to eight numerical examples. 

Firstly, the same examples used in [1] : Logistic [40] , Hénon [41] , 

Lorenz [42] , and Rössler equations [43] have been considered. We 

also included other four cases, namely: Sine Map [44] , Tent Map 

[45] , Mackey-Glass [46] , and a Simulink version of Rössler adapted 

from Aseeri [47] . We have also investigated the results of the pro- 

posed method to calculate the LLE for a periodic dynamical system, 

which has obviously delivered a non-positive value. 

Algorithm 1 Pseudo-code of the LLE calculation using Matlab, 

where mod1 and mod2 are two different rounding modes and RLS 

is the recursive least square algorithm according Eq. (6) . 

1: input Parameters, initial conditions, tol 

2: Stop ← False 

3: while Stop do 

4: |system_dependent(‘setround’,mod1)| 

5: ˆ x a,n +1 ← f ( ̂  x a,n ) 

6: |system_dependent(‘setround’,mod2)| 

7: ˆ x b,n +1 ← f ( ̂  x b,n ) 

8: |system_dependent(‘setround’,0.5)| 

9: � �,n +1 ← (| ̂ x a,n +1 − ˆ x b,n +1 | ) / 2 
10: λn +1 ← RLS (� �,n +1 ) 

11: λ5+ ← max { λn +1 , λn , · · · , λn −3 } 
12: λ5 − ← min { λn +1 , λn , · · · , λn −3 } 
13: λm 

← mean { λn +1 , λn , · · · , λn −3 } 
14: if 

| λ5+ − λ5 −| 
| λm 

| < tol then 

15: Stop ← True 

16: end if 

17: end while 

The remainder of the paper is organised as follows. 

Section 2 provides preliminary concepts about LBE. The main 

results are developed in Section 3 . Section 4 is devoted to 

illustrate the results and final remarks are given in Section 5 . 

2. The lower bound error 

In this section, some definitions on recursive functions, NIE and 

pseudo-orbits are shown. After that, the theorem of LBE is pre- 

sented [28] . Let n ∈ N , a metric space M ⊂ R , the relation 

x n +1 = f (x n ) , (2) 

where f : M → M , is a recursive function or a map of a state space 

into itself and x n denotes the state at the discrete time n . The se- 

quence { x n } obtained by iterating Eq. (2) starting from an initial 

condition x 0 is called the orbit of x 0 [48] . Let f be a function of 

real variable x . Moore and Moore [49] present the following defi- 

nition. 

Table 1 

Chaotic systems investigated in this paper. The Rössler has also been modelled us- 

ing Simulink, as described in Fig. 1 . The sampling time is denoted by �t ( s ). The 

initial condition is arbitrarily adopted but fixed for the two rounding modes. 

System Equations Parameters �t ( s ) Initial 

Condition 

Logistic x n +1 = μx n (1 − x n ) μ = 4 . 0 1 x 0 = 2 / 3 

Hénon x n +1 = 1 − ax 2 n + y n a = 1 . 4 1 x 0 = 0 . 3 

y n +1 = bx n b = 0 . 3 y 0 = 0 . 3 

Sine Map x n +1 = ax n − bx 3 n a = 2 . 6 86 8 1 x 0 = 0 . 1 

b = 0 . 2462 

Tent Map x n +1 = r min { x n , 1 - x n } r = 1.99 1 x 0 = 0 . 6 

Lorenz ˙ x = σ (y − x ) σ = 16 . 0 0.01 x (0) = 1 

˙ y = x (ρ − z) − y ρ = 45 . 92 y (0) = 0 . 5 

˙ z = xy − βz β = 4 . 0 z(0) = 0 . 9 

Rössler ˙ x = −y − z a = 0 . 15 0.10 x (0) = −1 

˙ y = x + ay b = 0 . 20 y (0) = 1 

˙ z = b + z(x − c) c = 10 . 0 z(0) = 1 

Mackey-Glass ˙ x = 

ax τ

1 − x c τ
− bx a = 0 . 2 , b = 0 . 1 0.3 x (0) = 0 . 3 

c = 10 , τ = 30 

Table 2 

Computation of the LLE ( λ) given in natural logarithm. The last column 

presents the number needed iterates to calculate λ. The expected values are 

obtained in references indicated in the third column. 

System Literature λ [Ref.] Calculated λ Iterates 

Logistic 0.693 [4] 0.711 35 

Hénon 0.418 [11] 0.408 89 

Sine Map 0.773 [44] 0.794 26 

Tent Map 0.688 [45] 0.684 16 

Lorenz 1.500 [11] 1.390 2496 

Rössler 0.092 [11] 0.092 1413 

Rössler (Simulink) 0.092 [11] 0.092 1090 

Mackey-Glass 0.0074 [18] 0.0069 10,178 

Definition 2.1. A natural interval extension (NIE) of f is an interval 

valued function F of an interval variable X , with the property 

F (x ) = f (x ) for real arguments , (3) 

where by an interval we mean a closed set of real numbers x ∈ R 

such that X = [ X , X̄ ] = { x : X ≤ x ≤ X̄ } . 
Connected to a map an orbit may be defined as follows: 

Definition 2.2. An orbit is a sequence of values of a map, repre- 

sented by { x n } = [ x 0 , x 1 , . . . , x n ] . 

Definition 2.3. Let i ∈ N represents a pseudo-orbit, which is defined 

by an initial condition, a natural interval extension of f, some specific 

hardware, software, numerical precision standard and discretization 

scheme . A pseudo-orbit approximates an orbit and can be repre- 

sented as 

{ ̂  x i,n } = [ ̂  x i, 0 , ̂  x i, 1 , . . . , ̂  x i,n ] , 

such that 

| x n − ˆ x i,n | ≤ γi,n , (4) 

where γi,n ∈ R is a bound of the error and γ i, n ≥ 0. 

Nepomuceno et al. [29] have shown that two pseudo-orbits de- 

rived from associative multiplication property presents the same 

error bounds. These extensions have been called in such work as 

arithmetic interval extension . The lower bound error theorem has 

been proved in [29] : 

Theorem 2.4. Let { ̂ x a,n } and { ̂ x b,n } be two pseudo-orbits derived 

from two arithmetic interval extensions. Let � �,n = | ̂ x a,n − ˆ x b,n | / 2 be 

the lower bound error associated to the set of pseudo-orbits � = 

[ { ̂ x a,n } , { ̂ x b,n } ] of a map, then γa,n = γb,n ≥ � �,n . 
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